These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23090401)

  • 41. High-quality protein backbone reconstruction from alpha carbons using Gaussian mixture models.
    Moore BL; Kelley LA; Barber J; Murray JW; MacDonald JT
    J Comput Chem; 2013 Aug; 34(22):1881-9. PubMed ID: 23703289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography.
    Yamashita K; Pan D; Okuda T; Sugahara M; Kodan A; Yamaguchi T; Murai T; Gomi K; Kajiyama N; Mizohata E; Suzuki M; Nango E; Tono K; Joti Y; Kameshima T; Park J; Song C; Hatsui T; Yabashi M; Iwata S; Kato H; Ago H; Yamamoto M; Nakatsu T
    Sci Rep; 2015 Sep; 5():14017. PubMed ID: 26360462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular replacement using structure predictions from databases.
    Simpkin AJ; Thomas JMH; Simkovic F; Keegan RM; Rigden DJ
    Acta Crystallogr D Struct Biol; 2019 Dec; 75(Pt 12):1051-1062. PubMed ID: 31793899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A homology/ab initio hybrid algorithm for sampling near-native protein conformations.
    Dhingra P; Jayaram B
    J Comput Chem; 2013 Aug; 34(22):1925-36. PubMed ID: 23728619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LEAP: highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains.
    Liang S; Zhang C; Zhou Y
    J Comput Chem; 2014 Feb; 35(4):335-41. PubMed ID: 24327406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-resolution structure prediction and the crystallographic phase problem.
    Qian B; Raman S; Das R; Bradley P; McCoy AJ; Read RJ; Baker D
    Nature; 2007 Nov; 450(7167):259-64. PubMed ID: 17934447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Approaches to ab initio molecular replacement of α-helical transmembrane proteins.
    Thomas JMH; Simkovic F; Keegan R; Mayans O; Zhang C; Zhang Y; Rigden DJ
    Acta Crystallogr D Struct Biol; 2017 Dec; 73(Pt 12):985-996. PubMed ID: 29199978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RCD+: Fast loop modeling server.
    López-Blanco JR; Canosa-Valls AJ; Li Y; Chacón P
    Nucleic Acids Res; 2016 Jul; 44(W1):W395-400. PubMed ID: 27151199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of direct methods in protein crystallography for dealing with diffraction data down to 5 Å resolution.
    Fan H; Gu Y; He Y; Lin Z; Wang J; Yao D; Zhang T
    Acta Crystallogr A Found Adv; 2014 May; 70(Pt 3):239-47. PubMed ID: 24815973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De novo Protein Structure Prediction by Coupling Contact With Distance Profile.
    Peng CX; Zhou XG; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):395-406. PubMed ID: 32750861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models.
    Bibby J; Keegan RM; Mayans O; Winn MD; Rigden DJ
    Acta Crystallogr D Biol Crystallogr; 2012 Dec; 68(Pt 12):1622-31. PubMed ID: 23151627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ab initio phasing of the diffraction of crystals with translational disorder.
    Morgan AJ; Ayyer K; Barty A; Chen JPJ; Ekeberg T; Oberthuer D; White TA; Yefanov O; Chapman HN
    Acta Crystallogr A Found Adv; 2019 Jan; 75(Pt 1):25-40. PubMed ID: 30575581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ab initio phasing of high-symmetry macromolecular complexes: successful phasing of authentic poliovirus data to 3.0 A resolution.
    Miller ST; Hogle JM; Filman DJ
    J Mol Biol; 2001 Mar; 307(2):499-512. PubMed ID: 11254378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ab initio solution of macromolecular crystal structures without direct methods.
    McCoy AJ; Oeffner RD; Wrobel AG; Ojala JR; Tryggvason K; Lohkamp B; Read RJ
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3637-3641. PubMed ID: 28325875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. De novo inference of protein function from coarse-grained dynamics.
    Bhadra P; Pal D
    Proteins; 2014 Oct; 82(10):2443-54. PubMed ID: 24862950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iterative projection algorithms for ab initio phasing in virus crystallography.
    Lo VL; Kingston RL; Millane RP
    J Struct Biol; 2016 Dec; 196(3):407-413. PubMed ID: 27623229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using iterative fragment assembly and progressive sequence truncation to facilitate phasing and crystal structure determination of distantly related proteins.
    Wang Y; Virtanen J; Xue Z; Tesmer JJ; Zhang Y
    Acta Crystallogr D Struct Biol; 2016 May; 72(Pt 5):616-28. PubMed ID: 27139625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the AMBER force field with the Generalized Born solvation model.
    de Bakker PI; DePristo MA; Burke DF; Blundell TL
    Proteins; 2003 Apr; 51(1):21-40. PubMed ID: 12596261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relative stability of de novo four-helix bundle proteins: insights from coarse grained molecular simulations.
    Bellesia G; Jewett AI; Shea JE
    Protein Sci; 2011 May; 20(5):818-26. PubMed ID: 21344535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.