BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23090583)

  • 1. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy.
    Fu G; Liu W; Feng S; Yue X
    Chem Commun (Camb); 2012 Dec; 48(94):11567-9. PubMed ID: 23090583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Prussian Blue Nanocubes as Photothermal Ablation Agents for Efficient Cancer Therapy.
    Xue P; Bao J; Wu Y; Zhang Y; Kang Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):168-74. PubMed ID: 29617098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy.
    Xue P; Cheong KK; Wu Y; Kang Y
    Colloids Surf B Biointerfaces; 2015 Jan; 125():277-83. PubMed ID: 25465756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer.
    Jing L; Liang X; Deng Z; Feng S; Li X; Huang M; Li C; Dai Z
    Biomaterials; 2014 Jul; 35(22):5814-21. PubMed ID: 24746962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional manganese-doped Prussian blue nanoparticles for two-photon photothermal therapy and magnetic resonance imaging.
    Ali LMA; Mathlouthi E; Kajdan M; Daurat M; Long J; Sidi-Boulenouar R; Cardoso M; Goze-Bac C; Amdouni N; Guari Y; Larionova J; Gary-Bobo M
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():65-69. PubMed ID: 29477814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance.
    Fu G; Liu W; Li Y; Jin Y; Jiang L; Liang X; Feng S; Dai Z
    Bioconjug Chem; 2014 Sep; 25(9):1655-63. PubMed ID: 25109612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper sulfide nanoparticles for photothermal ablation of tumor cells.
    Li Y; Lu W; Huang Q; Huang M; Li C; Chen W
    Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-synergistic effect of Prussian blue nanoparticles for cancer therapy: driving photothermal therapy and reducing hyperthermia-induced side effects.
    Xie X; Gao W; Hao J; Wu J; Cai X; Zheng Y
    J Nanobiotechnology; 2021 May; 19(1):126. PubMed ID: 33947395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zn
    Shou P; Yu Z; Wu Y; Feng Q; Zhou B; Xing J; Liu C; Tu J; Akakuru OU; Ye Z; Zhang X; Lu Z; Zhang L; Wu A
    Adv Healthc Mater; 2020 Jan; 9(1):e1900948. PubMed ID: 31746549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification.
    Wu W; Yu L; Pu Y; Yao H; Chen Y; Shi J
    Adv Mater; 2020 Apr; 32(17):e2000542. PubMed ID: 32162734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcysteine-decorated Prussian blue nanoparticles for strong photothermal sterilization and focal infection treatment.
    Cai S; Qian J; Yang S; Kuang L; Hua D
    Colloids Surf B Biointerfaces; 2019 Sep; 181():31-38. PubMed ID: 31121379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance.
    Zhu W; Liu K; Sun X; Wang X; Li Y; Cheng L; Liu Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11575-82. PubMed ID: 25965554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo.
    Cheng FY; Su CH; Wu PC; Yeh CS
    Chem Commun (Camb); 2010 May; 46(18):3167-9. PubMed ID: 20424762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prussian Blue Nanoparticles as a Versatile Photothermal Tool.
    Dacarro G; Taglietti A; Pallavicini P
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29891819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion.
    Hong G; Zhang D; He Y; Yang Y; Chen P; Yang H; Zhou Z; Liu Y; Wang Y
    Anal Bioanal Chem; 2019 Oct; 411(26):6837-6845. PubMed ID: 31471682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluoropentane-encapsulated hollow mesoporous prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer.
    Jia X; Cai X; Chen Y; Wang S; Xu H; Zhang K; Ma M; Wu H; Shi J; Chen H
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4579-88. PubMed ID: 25646576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy.
    Zhu W; Gao MY; Zhu Q; Chi B; Zeng LW; Hu JM; Shen AG
    Nanoscale; 2020 Feb; 12(5):3292-3301. PubMed ID: 31971195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.
    Wang S; Riedinger A; Li H; Fu C; Liu H; Li L; Liu T; Tan L; Barthel MJ; Pugliese G; De Donato F; Scotto D'Abbusco M; Meng X; Manna L; Meng H; Pellegrino T
    ACS Nano; 2015 Feb; 9(2):1788-800. PubMed ID: 25603353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging.
    Liang X; Deng Z; Jing L; Li X; Dai Z; Li C; Huang M
    Chem Commun (Camb); 2013 Dec; 49(94):11029-31. PubMed ID: 23884328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells.
    Li B; Wang Q; Zou R; Liu X; Xu K; Li W; Hu J
    Nanoscale; 2014 Mar; 6(6):3274-82. PubMed ID: 24509646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.