These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23090583)

  • 21. Facile synthesis of Fe-p-aminophenol nanoparticles for photothermal therapy.
    Liu Y; Liu S; Hu C; Li Y; Pang M
    Dalton Trans; 2019 Dec; 48(45):16848-16852. PubMed ID: 31687718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent Assembly of Amphiphilic Bola-Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy.
    Liu Y; Zhao L; Xing R; Jiao T; Song W; Yan X
    Chem Asian J; 2018 Nov; 13(22):3526-3532. PubMed ID: 29979822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature.
    Zhang L; Sun L; Hou M; Xu Z; Kang Y; Xue P
    Biomed Microdevices; 2018 Aug; 20(3):68. PubMed ID: 30094581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer.
    Jing L; Shao S; Wang Y; Yang Y; Yue X; Dai Z
    Theranostics; 2016; 6(1):40-53. PubMed ID: 26722372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ amplified photothermal immunoassay for neuron-specific enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes.
    Zhi LJ; Sun AL; Tang D
    Analyst; 2020 Jun; 145(12):4164-4172. PubMed ID: 32369047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction.
    Su Y; Wei X; Peng F; Zhong Y; Lu Y; Su S; Xu T; Lee ST; He Y
    Nano Lett; 2012 Apr; 12(4):1845-50. PubMed ID: 22401822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prussian blue nanoparticles coated with tumor cell membranes for precise photothermal therapy and subsequent inflammation reduction.
    Zou H; Wang H; Zhong Y; Zhang Z; Wang Z; Shang T
    Biochem Biophys Res Commun; 2024 Sep; 723():150173. PubMed ID: 38830299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting ligand-functionalized photothermal scaffolds for cancer cell capture and in situ ablation.
    Zhang J; Li J; Wang X; Kawazoe N; Chen G
    Biomater Sci; 2017 Oct; 5(11):2276-2284. PubMed ID: 28994425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatible Fe
    Liu PY; Miao ZH; Li K; Yang H; Zhen L; Xu CY
    Colloids Surf B Biointerfaces; 2018 Jul; 167():183-190. PubMed ID: 29653369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step synthesis of gradient gadolinium ironhexacyanoferrate nanoparticles: a new particle design easily combining MRI contrast and photothermal therapy.
    Li Y; Li CH; Talham DR
    Nanoscale; 2015 Mar; 7(12):5209-16. PubMed ID: 25706057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon Dots/Prussian Blue Satellite/Core Nanocomposites for Optical Imaging and Photothermal Therapy.
    Peng X; Wang R; Wang T; Yang W; Wang H; Gu W; Ye L
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1084-1092. PubMed ID: 29251905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer.
    Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S
    Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PEGylated cyanine dye nanoparticles as photothermal agents for mosquito and cancer cell control.
    Xu Q; Shen Y; Zhang Y; Shao X
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2398-2404. PubMed ID: 31201064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prussian blue nanoparticles and their analogues for application to cancer theranostics.
    Patra CR
    Nanomedicine (Lond); 2016 Mar; 11(6):569-72. PubMed ID: 26911239
    [No Abstract]   [Full Text] [Related]  

  • 35. One minute, sub-one-watt photothermal tumor ablation using porphysomes, intrinsic multifunctional nanovesicles.
    Jin CS; Lovell JF; Zheng G
    J Vis Exp; 2013 Sep; (79):e50536. PubMed ID: 24084712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.
    Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J
    ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy.
    Chen M; Fang X; Tang S; Zheng N
    Chem Commun (Camb); 2012 Sep; 48(71):8934-6. PubMed ID: 22847451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy.
    Boca SC; Potara M; Gabudean AM; Juhem A; Baldeck PL; Astilean S
    Cancer Lett; 2011 Dec; 311(2):131-40. PubMed ID: 21840122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prussian Blue Modified PLA Microcapsules Containing R6G for Ultrasonic/Fluorescent Bimodal Imaging Guided Photothermal Tumor Therapy.
    Feng S; Wang J; Ma F; Liang X; Li X; Xing S; Yue X
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2184-93. PubMed ID: 27455617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of cobalt-Prussian Blue nanoparticles in a biopolymer matrix.
    Collins AM; Mann S; Hall SR
    Nanoscale; 2010 Nov; 2(11):2370-2. PubMed ID: 20877859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.