These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23090851)

  • 1. Structure-selective catalytic alkylation of DNA and RNA.
    Tishinov K; Schmidt K; Häussinger D; Gillingham DG
    Angew Chem Int Ed Engl; 2012 Nov; 51(48):12000-4. PubMed ID: 23090851
    [No Abstract]   [Full Text] [Related]  

  • 2. Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme.
    Nowakowski J; Shim PJ; Prasad GS; Stout CD; Joyce GF
    Nat Struct Biol; 1999 Feb; 6(2):151-6. PubMed ID: 10048927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitution of non-catalytic stem and loop regions of hammerhead ribozyme with DNA counterparts only increases KM without sacrificing the catalytic step (kcat): a way to improve substrate-specificity.
    Shimayama T; Sawata S; Komiyama M; Takagi Y; Tanaka Y; Wada A; Sugimoto N; Rossi JJ; Nishikawa F; Nishikawa S
    Nucleic Acids Symp Ser; 1992; (27):17-8. PubMed ID: 1283905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric control of ribozyme catalysis by using DNA constraints.
    Zelin E; Silverman SK
    Chembiochem; 2007 Nov; 8(16):1907-11. PubMed ID: 17876755
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure, recognition properties, and flexibility of the DNA.RNA hybrid.
    Noy A; Pérez A; Márquez M; Luque FJ; Orozco M
    J Am Chem Soc; 2005 Apr; 127(13):4910-20. PubMed ID: 15796556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme.
    Cruz RP; Withers JB; Li Y
    Chem Biol; 2004 Jan; 11(1):57-67. PubMed ID: 15112995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.
    Schatzschneider U; Barton JK
    J Am Chem Soc; 2004 Jul; 126(28):8630-1. PubMed ID: 15250697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of catalytic parameters for hairpin ribozymes.
    DeYoung MB; Siwkowski A; Hampel A
    Methods Mol Biol; 1997; 74():209-20. PubMed ID: 9204436
    [No Abstract]   [Full Text] [Related]  

  • 9. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.
    Nowotny M; Gaidamakov SA; Crouch RJ; Yang W
    Cell; 2005 Jul; 121(7):1005-16. PubMed ID: 15989951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate.
    Wang DY; Sen D
    J Mol Biol; 2001 Jul; 310(4):723-34. PubMed ID: 11453683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling.
    Mei SH; Liu Z; Brennan JD; Li Y
    J Am Chem Soc; 2003 Jan; 125(2):412-20. PubMed ID: 12517153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation.
    Cole KB; Dorit RL
    J Mol Biol; 1999 Oct; 292(4):931-44. PubMed ID: 10525416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB.
    Yu B; Edstrom WC; Benach J; Hamuro Y; Weber PC; Gibney BR; Hunt JF
    Nature; 2006 Feb; 439(7078):879-84. PubMed ID: 16482161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a photoactive rhodium complex intercalated into DNA.
    Kielkopf CL; Erkkila KE; Hudson BP; Barton JK; Rees DC
    Nat Struct Biol; 2000 Feb; 7(2):117-21. PubMed ID: 10655613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli.
    Cole KB; Dorit RL
    J Mol Biol; 2001 Apr; 307(5):1181-212. PubMed ID: 11292334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysts for RNA and DNA modification.
    Gillingham D; Shahid R
    Curr Opin Chem Biol; 2015 Apr; 25():110-4. PubMed ID: 25590584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleic acids structure and recognition.
    Chang KY; Varani G
    Nat Struct Biol; 1997 Oct; 4 Suppl():854-8. PubMed ID: 9377158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.