These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 23090979)
1. The anticancer ruthenium complex KP1019 induces DNA damage, leading to cell cycle delay and cell death in Saccharomyces cerevisiae. Stevens SK; Strehle AP; Miller RL; Gammons SH; Hoffman KJ; McCarty JT; Miller ME; Stultz LK; Hanson PK Mol Pharmacol; 2013 Jan; 83(1):225-34. PubMed ID: 23090979 [TBL] [Abstract][Full Text] [Related]
2. DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae. Bierle LA; Reich KL; Taylor BE; Blatt EB; Middleton SM; Burke SD; Stultz LK; Hanson PK; Partridge JF; Miller ME PLoS One; 2015; 10(9):e0138085. PubMed ID: 26375390 [TBL] [Abstract][Full Text] [Related]
3. Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response in Saccharomyces cerevisiae. Singh V; Azad GK; Mandal P; Reddy MA; Tomar RS FEBS Lett; 2014 Mar; 588(6):1044-52. PubMed ID: 24561198 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Stultz LK; Hunsucker A; Middleton S; Grovenstein E; O'Leary J; Blatt E; Miller M; Mobley J; Hanson PK Metallomics; 2020 Jun; 12(6):876-890. PubMed ID: 32329475 [TBL] [Abstract][Full Text] [Related]
5. Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae. Singh V; Azad GK; Reddy M A; Baranwal S; Tomar RS Eur J Pharmacol; 2014 Aug; 736():77-85. PubMed ID: 24797784 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic and acquired forms of resistance against the anticancer ruthenium compound KP1019 [indazolium trans-[tetrachlorobis(1H-indazole)ruthenate (III)] (FFC14A). Heffeter P; Pongratz M; Steiner E; Chiba P; Jakupec MA; Elbling L; Marian B; Körner W; Sevelda F; Micksche M; Keppler BK; Berger W J Pharmacol Exp Ther; 2005 Jan; 312(1):281-9. PubMed ID: 15331656 [TBL] [Abstract][Full Text] [Related]
7. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Moriel-Carretero M; Aguilera A Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372 [TBL] [Abstract][Full Text] [Related]
8. The requirement of yeast Ssl2 (Rad25) for the repair of cisplatin-damaged DNA. Yang WL; Cvijic ME; Ishii K; Chin KV Biochem Biophys Res Commun; 1998 Sep; 250(3):593-7. PubMed ID: 9784390 [TBL] [Abstract][Full Text] [Related]
9. A specific transcriptional response of yeast cells to camptothecin dependent on the Swi4 and Mbp1 factors. Lotito L; Russo A; Bueno S; Chillemi G; Fogli MV; Capranico G Eur J Pharmacol; 2009 Jan; 603(1-3):29-36. PubMed ID: 19094980 [TBL] [Abstract][Full Text] [Related]
10. EPR as a probe of the intracellular speciation of ruthenium(III) anticancer compounds. Webb MI; Walsby CJ Metallomics; 2013 Dec; 5(12):1624-33. PubMed ID: 24057014 [TBL] [Abstract][Full Text] [Related]
11. From bench to bedside--preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). Hartinger CG; Zorbas-Seifried S; Jakupec MA; Kynast B; Zorbas H; Keppler BK J Inorg Biochem; 2006 May; 100(5-6):891-904. PubMed ID: 16603249 [TBL] [Abstract][Full Text] [Related]
12. Roles of nonhomologous end-joining pathways in surviving topoisomerase II-mediated DNA damage. Malik M; Nitiss KC; Enriquez-Rios V; Nitiss JL Mol Cancer Ther; 2006 Jun; 5(6):1405-14. PubMed ID: 16818498 [TBL] [Abstract][Full Text] [Related]
13. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex. Hofland K; Petersen BO; Falck J; Helin K; Jensen PB; Sehested M Clin Cancer Res; 2000 Apr; 6(4):1488-97. PubMed ID: 10778981 [TBL] [Abstract][Full Text] [Related]
14. DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Barber LJ; Ward TA; Hartley JA; McHugh PJ Mol Cell Biol; 2005 Mar; 25(6):2297-309. PubMed ID: 15743825 [TBL] [Abstract][Full Text] [Related]
15. Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Wang Z; Svejstrup JQ; Feaver WJ; Wu X; Kornberg RD; Friedberg EC Nature; 1994 Mar; 368(6466):74-6. PubMed ID: 8107888 [TBL] [Abstract][Full Text] [Related]
16. Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Simon JA; Szankasi P; Nguyen DK; Ludlow C; Dunstan HM; Roberts CJ; Jensen EL; Hartwell LH; Friend SH Cancer Res; 2000 Jan; 60(2):328-33. PubMed ID: 10667584 [TBL] [Abstract][Full Text] [Related]
17. Influence of ascorbic acid on the activity of the investigational anticancer drug KP1019. Bartel C; Egger AE; Jakupec MA; Heffeter P; Galanski MS; Berger W; Keppler BK J Biol Inorg Chem; 2011 Dec; 16(8):1205-15. PubMed ID: 21706338 [TBL] [Abstract][Full Text] [Related]
18. DNA damage-processing pathways involved in the eukaryotic cellular response to anticancer DNA cross-linking drugs. Beljanski V; Marzilli LG; Doetsch PW Mol Pharmacol; 2004 Jun; 65(6):1496-506. PubMed ID: 15155842 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells. Jensen LH; Dejligbjerg M; Hansen LT; Grauslund M; Jensen PB; Sehested M BMC Pharmacol; 2004 Dec; 4():31. PubMed ID: 15575955 [TBL] [Abstract][Full Text] [Related]
20. Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Matuo R; Sousa FG; Soares DG; Bonatto D; Saffi J; Escargueil AE; Larsen AK; Henriques JA Cancer Chemother Pharmacol; 2012 Oct; 70(4):491-502. PubMed ID: 22851206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]