These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23091459)

  • 1. On the Kinematic Motion Primitives (kMPs) - Theory and Application.
    Moro FL; Tsagarakis NG; Caldwell DG
    Front Neurorobot; 2012; 6():10. PubMed ID: 23091459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic decomposition and classification of octopus arm movements.
    Zelman I; Titon M; Yekutieli Y; Hanassy S; Hochner B; Flash T
    Front Comput Neurosci; 2013; 7():60. PubMed ID: 23745113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.
    Li C; Lowe R; Ziemke T
    Front Neurorobot; 2014; 8():23. PubMed ID: 25324773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic primitives in the control of locomotion.
    Hogan N; Sternad D
    Front Comput Neurosci; 2013; 7():71. PubMed ID: 23801959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-shot model-free learning of periodic movements for a bio-inspired soft-robotic arm.
    Oikonomou P; Dometios A; Khamassi M; Tzafestas CS
    Front Robot AI; 2023; 10():1256763. PubMed ID: 37929074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-Synchronized Learning of Periodic Compliant Movement Primitives (P-CMPs).
    Petrič T
    Front Neurorobot; 2020; 14():599889. PubMed ID: 33281594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot.
    Popescu M; Mronga D; Bergonzani I; Kumar S; Kirchner F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic learning of hand gestures in a humanoid robot.
    Olikkal P; Pei D; Karri BK; Satyanarayana A; Kakoty NM; Vinjamuri R
    Front Hum Neurosci; 2024; 18():1391531. PubMed ID: 39099602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying and modeling motion primitives for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Sledge I; Krieg M; Lipinski D; Mohseni K
    Bioinspir Biomim; 2015 Oct; 10(6):066001. PubMed ID: 26495992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarkers for rhythmic and discrete dynamic primitives in locomotion.
    Moura Coelho R; Hirai H; Martins J; Krebs HI
    Sci Rep; 2022 Nov; 12(1):20165. PubMed ID: 36424422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Framework for Understanding and Predicting Human Reaching Motions.
    Oguz OS; Zhou Z; Wollherr D
    Front Robot AI; 2018; 5():27. PubMed ID: 33500914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantizing Euclidean Motions via Double-Coset Decomposition.
    Wülker C; Ruan S; Chirikjian GS
    Research (Wash D C); 2019; 2019():1608396. PubMed ID: 32043079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled Robots with Velocity Compensation.
    Li Y; Ge S; Dai S; Zhao L; Yan X; Zheng Y; Shi Y
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment.
    Raković M; Savić S; Santos-Victor J; Nikolić M; Borovac B
    Front Neurorobot; 2019; 13():36. PubMed ID: 31214011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.