These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23091562)
1. Global stability analysis of SEIR model with holling type II incidence function. Safi MA; Garba SM Comput Math Methods Med; 2012; 2012():826052. PubMed ID: 23091562 [TBL] [Abstract][Full Text] [Related]
2. Global dynamics of an epidemiological model with age of infection and disease relapse. Xu R J Biol Dyn; 2018 Dec; 12(1):118-145. PubMed ID: 29198167 [TBL] [Abstract][Full Text] [Related]
3. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis. Kumar A; Goel K; Nilam Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204 [TBL] [Abstract][Full Text] [Related]
4. Global stability of an age-structured epidemic model with general Lyapunov functional. Chekroun A; Frioui MN; Kuniya T; Touaoula TM Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431 [TBL] [Abstract][Full Text] [Related]
5. Sveir epidemiological model with varying infectivity and distributed delays. Wang J; Huang G; Takeuchi Y; Liu S Math Biosci Eng; 2011 Jul; 8(3):875-88. PubMed ID: 21675816 [TBL] [Abstract][Full Text] [Related]
6. Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Liu P; Li HX Math Biosci Eng; 2020 Oct; 17(6):7248-7273. PubMed ID: 33378896 [TBL] [Abstract][Full Text] [Related]
7. Seir epidemiological model with varying infectivity and infinite delay. Röst G; Wu J Math Biosci Eng; 2008 Apr; 5(2):389-402. PubMed ID: 18613739 [TBL] [Abstract][Full Text] [Related]
8. Global stability of an epidemic model with delay and general nonlinear incidence. McCluskey CC Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711 [TBL] [Abstract][Full Text] [Related]
9. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Korobeinikov A Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976 [TBL] [Abstract][Full Text] [Related]
10. Dynamic analysis of an SEIR model with distinct incidence for exposed and infectives. Li J; Cui N ScientificWorldJournal; 2013; 2013():871393. PubMed ID: 23766718 [TBL] [Abstract][Full Text] [Related]
11. Global stability of multi-group SIR epidemic model with group mixing and human movement. Cui QQ Math Biosci Eng; 2019 Mar; 16(4):1798-1814. PubMed ID: 31137186 [TBL] [Abstract][Full Text] [Related]
12. Backward bifurcations in dengue transmission dynamics. Garba SM; Gumel AB; Abu Bakar MR Math Biosci; 2008 Sep; 215(1):11-25. PubMed ID: 18573507 [TBL] [Abstract][Full Text] [Related]
13. An SIS patch model with variable transmission coefficients. Gao D; Ruan S Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886 [TBL] [Abstract][Full Text] [Related]
14. Global stability properties of a class of renewal epidemic models. Meehan MT; Cocks DG; Müller J; McBryde ES J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545 [TBL] [Abstract][Full Text] [Related]
15. Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks. Chen S; Small M; Tao Y; Fu X Bull Math Biol; 2018 Aug; 80(8):2049-2087. PubMed ID: 29948881 [TBL] [Abstract][Full Text] [Related]
16. Optimal control of a fractional order SEIQR epidemic model with non-monotonic incidence and quarantine class. Srivastava A; Nilam Comput Biol Med; 2024 Aug; 178():108682. PubMed ID: 38861897 [TBL] [Abstract][Full Text] [Related]
17. Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation. Safi MA; Imran M; Gumel AB Theory Biosci; 2012 May; 131(1):19-30. PubMed ID: 22222764 [TBL] [Abstract][Full Text] [Related]
18. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Kuniya T; Muroya Y; Enatsu Y Math Biosci Eng; 2014 Dec; 11(6):1375-93. PubMed ID: 25365599 [TBL] [Abstract][Full Text] [Related]
19. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Huang G; Takeuchi Y; Ma W; Wei D Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354 [TBL] [Abstract][Full Text] [Related]
20. Global stability for epidemic model with constant latency and infectious periods. Huang G; Beretta E; Takeuchi Y Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]