These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23091598)

  • 1. A loud auditory stimulus overcomes voluntary movement limitation in cervical dystonia.
    Serranová T; Jech R; Martí MJ; Modreanu R; Valldeoriola F; Sieger T; Růžička E; Valls-Solé J
    PLoS One; 2012; 7(10):e46586. PubMed ID: 23091598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When reflex reactions oppose voluntary commands: The StartReact effect on eye opening.
    Valls-Solé J; Castellote JM; Kofler M; Serranová T; Versace V; Campostrini S; Campolo M
    Psychophysiology; 2021 Mar; 58(3):e13752. PubMed ID: 33347635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the StartReact Effect Apply to First-Trial Reactive Movements?
    Sutter K; Nonnekes J; Dibilio V; Geurts AC; Weerdesteyn V
    PLoS One; 2016; 11(4):e0153129. PubMed ID: 27077654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The StartReact effect in tasks requiring end-point accuracy.
    Castellote JM; Valls-Solé J
    Clin Neurophysiol; 2015 Oct; 126(10):1879-85. PubMed ID: 25754260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical involvement in the StartReact effect.
    Stevenson AJ; Chiu C; Maslovat D; Chua R; Gick B; Blouin JS; Franks IM
    Neuroscience; 2014 Jun; 269():21-34. PubMed ID: 24680855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast voluntary neck movements in patients with cervical dystonia: a kinematic study before and after therapy with botulinum toxin type A.
    Gregori B; Agostino R; Bologna M; Dinapoli L; Colosimo C; Accornero N; Berardelli A
    Clin Neurophysiol; 2008 Feb; 119(2):273-80. PubMed ID: 18063411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The StartReact effect on self-initiated movements.
    Castellote JM; Van den Berg ME; Valls-Solé J
    Biomed Res Int; 2013; 2013():471792. PubMed ID: 24106706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of subcortical motor pathways to the execution of ballistic movements.
    Valls-Solé J
    Suppl Clin Neurophysiol; 2004; 57():554-62. PubMed ID: 16106656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a startling acoustic stimulus on reaction time in different parkinsonian syndromes.
    Valldeoriola F; Valls-Solé J; Tolosa E; Ventura PJ; Nobbe FA; Martí MJ
    Neurology; 1998 Nov; 51(5):1315-20. PubMed ID: 9818852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choice reaction times for human head rotations are shortened by startling acoustic stimuli, irrespective of stimulus direction.
    Oude Nijhuis LB; Janssen L; Bloem BR; van Dijk JG; Gielen SC; Borm GF; Overeem S
    J Physiol; 2007 Oct; 584(Pt 1):97-109. PubMed ID: 17656433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitability of the pathways mediating the startle reaction before execution of a voluntary movement.
    Kumru H; Valls-Solé J
    Exp Brain Res; 2006 Mar; 169(3):427-32. PubMed ID: 16273394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foreknowledge of an impending startling stimulus does not affect the proportion of startle reflexes or latency of StartReact responses.
    Drummond NM; Leguerrier A; Carlsen AN
    Exp Brain Res; 2017 Feb; 235(2):379-388. PubMed ID: 27738717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural gain induced by startling acoustic stimuli is additive to preparatory activation.
    McInnes AN; Corti EJ; Tresilian JR; Lipp OV; Marinovic W
    Psychophysiology; 2020 Mar; 57(3):e13493. PubMed ID: 31595983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimanual but not unimanual finger movements are triggered by a startling acoustic stimulus: evidence for increased reticulospinal drive for bimanual responses.
    Maslovat D; Teku F; Smith V; Drummond NM; Carlsen AN
    J Neurophysiol; 2020 Dec; 124(6):1832-1838. PubMed ID: 33026906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective sensorimotor integration in preparation for reaction time tasks in patients with multiple sclerosis.
    Cabib C; Llufriu S; Casanova-Molla J; Saiz A; Valls-Solé J
    J Neurophysiol; 2015 Mar; 113(5):1462-9. PubMed ID: 25475350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired motor preparation and execution during standing reach in people with chronic stroke.
    McCombe Waller S; Yang CL; Magder L; Yungher D; Gray V; Rogers MW
    Neurosci Lett; 2016 Sep; 630():38-44. PubMed ID: 27436481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. StartReact effects are dependent on engagement of startle reflex circuits: support for a subcortically mediated initiation pathway.
    Smith V; Maslovat D; Carlsen AN
    J Neurophysiol; 2019 Dec; 122(6):2541-2547. PubMed ID: 31642402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of transcranial direct current stimulation (tDCS) on posture, movement planning, and execution during standing voluntary reach following stroke.
    Yang CL; Gad A; Creath RA; Magder L; Rogers MW; Waller SM
    J Neuroeng Rehabil; 2021 Jan; 18(1):5. PubMed ID: 33413441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of a startle on the sit-to-stand manoeuvre.
    Queralt A; Valls-Solé J; Castellote JM
    Exp Brain Res; 2008 Mar; 185(4):603-9. PubMed ID: 17989969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. StartReact during gait initiation reveals differential control of muscle activation and inhibition in patients with corticospinal degeneration.
    van Lith BJH; Coppens MJM; Nonnekes J; van de Warrenburg BPC; Geurts AC; Weerdesteyn V
    J Neurol; 2018 Nov; 265(11):2531-2539. PubMed ID: 30155740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.