These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 23092287)
1. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. de Castro PA; Savoldi M; Bonatto D; Malavazi I; Goldman MH; Berretta AA; Goldman GH BMC Complement Altern Med; 2012 Oct; 12():194. PubMed ID: 23092287 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. de Castro PA; Savoldi M; Bonatto D; Barros MH; Goldman MH; Berretta AA; Goldman GH Eukaryot Cell; 2011 Mar; 10(3):398-411. PubMed ID: 21193549 [TBL] [Abstract][Full Text] [Related]
3. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A. Bereketoglu C; Arga KY; Eraslan S; Mertoglu B Curr Genet; 2017 May; 63(2):253-274. PubMed ID: 27460658 [TBL] [Abstract][Full Text] [Related]
4. Chemical genomic screening of a Saccharomyces cerevisiae genomewide mutant collection reveals genes required for defense against four antimicrobial peptides derived from proteins found in human saliva. Lis M; Bhatt S; Schoenly NE; Lee AY; Nislow C; Bobek LA Antimicrob Agents Chemother; 2013 Feb; 57(2):840-7. PubMed ID: 23208710 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional profiling in Saccharomyces cerevisiae relevant for predicting alachlor mechanisms of toxicity. Gil FN; Gonçalves AC; Jacinto MJ; Becker JD; Viegas CA Environ Toxicol Chem; 2011 Nov; 30(11):2506-18. PubMed ID: 21842488 [TBL] [Abstract][Full Text] [Related]
6. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae. Arita A; Zhou X; Ellen TP; Liu X; Bai J; Rooney JP; Kurtz A; Klein CB; Dai W; Begley TJ; Costa M BMC Genomics; 2009 Nov; 10():524. PubMed ID: 19917080 [TBL] [Abstract][Full Text] [Related]
7. Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions. Rodríguez-Quiñones JF; Irizarry RA; Díaz-Blanco NL; Rivera-Molina FE; Gómez-Garzón D; Rodríguez-Medina JR BMC Genomics; 2008 Jan; 9():34. PubMed ID: 18215314 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Jones DL; Petty J; Hoyle DC; Hayes A; Ragni E; Popolo L; Oliver SG; Stateva LI Physiol Genomics; 2003 Dec; 16(1):107-18. PubMed ID: 14570984 [TBL] [Abstract][Full Text] [Related]
9. Microarray Analysis of Gene Expression in Saccharomyces cerevisiae kap108Δ Mutants upon Addition of Oxidative Stress. Belanger KD; Larson N; Kahn J; Tkachev D; Ay A G3 (Bethesda); 2016 Apr; 6(4):1131-9. PubMed ID: 26888869 [TBL] [Abstract][Full Text] [Related]
10. Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. Arvas M; Pakula T; Lanthaler K; Saloheimo M; Valkonen M; Suortti T; Robson G; Penttilä M BMC Genomics; 2006 Feb; 7():32. PubMed ID: 16504068 [TBL] [Abstract][Full Text] [Related]
11. Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae. Yu L; Guo N; Yang Y; Wu X; Meng R; Fan J; Ge F; Wang X; Liu J; Deng X J Ind Microbiol Biotechnol; 2010 Mar; 37(3):313-22. PubMed ID: 20024600 [TBL] [Abstract][Full Text] [Related]
12. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae. Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. Zeng L; Huang J; Feng P; Zhao X; Si Z; Long X; Cheng Q; Yi Y World J Microbiol Biotechnol; 2022 Jan; 38(2):34. PubMed ID: 34989900 [TBL] [Abstract][Full Text] [Related]
14. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
15. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. Kasavi C; Eraslan S; Arga KY; Oner ET; Kirdar B BMC Syst Biol; 2014 Aug; 8():90. PubMed ID: 25103914 [TBL] [Abstract][Full Text] [Related]
16. Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae. Hodgins-Davis A; Adomas AB; Warringer J; Townsend JP Genome Biol Evol; 2012; 4(11):1061-79. PubMed ID: 23019066 [TBL] [Abstract][Full Text] [Related]
17. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. Borklu Yucel E; Ulgen KO Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632 [TBL] [Abstract][Full Text] [Related]
18. Response of Saccharomyces cerevisiae to the stimulation of lipopolysaccharide. Shen L; Li Y; Jiang L; Wang X PLoS One; 2014; 9(8):e104428. PubMed ID: 25105496 [TBL] [Abstract][Full Text] [Related]
19. Quantitative inference of dynamic regulatory pathways via microarray data. Chang WC; Li CW; Chen BS BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298 [TBL] [Abstract][Full Text] [Related]
20. Insight into the molecular mechanisms of propolis activity using a subcellular proteomic approach. Petelinc T; Polak T; Jamnik P J Agric Food Chem; 2013 Nov; 61(47):11502-10. PubMed ID: 24195611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]