These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23092373)
1. Charge transfer magnetoexciton formation at vertically coupled quantum dots. Gutiérrez W; Marin JH; Mikhailov ID Nanoscale Res Lett; 2012 Oct; 7(1):585. PubMed ID: 23092373 [TBL] [Abstract][Full Text] [Related]
2. Trion X+ in vertically coupled type II quantum dots in threading magnetic field. Horta-Piñeres S; Escorcia-Salas GE; Mikhailov ID; Sierra-Ortega J Nanoscale Res Lett; 2012 Sep; 7(1):532. PubMed ID: 23013605 [TBL] [Abstract][Full Text] [Related]
3. A theoretical study of exciton energy levels in laterally coupled quantum dots. Barticevic Z; Pacheco M; Duque CA; Oliveira LE J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423 [TBL] [Abstract][Full Text] [Related]
4. Control of vertically coupled InGaAs/GaAs quantum dots with electric fields. Ortner G; Bayer M; Lyanda-Geller Y; Reinecke TL; Kress A; Reithmaier JP; Forchel A Phys Rev Lett; 2005 Apr; 94(15):157401. PubMed ID: 15904185 [TBL] [Abstract][Full Text] [Related]
5. GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting. Alshaikh A; Blick RH; Heyn C Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057850 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
7. Longitudinal wave function control in single quantum dots with an applied magnetic field. Cao S; Tang J; Gao Y; Sun Y; Qiu K; Zhao Y; He M; Shi JA; Gu L; Williams DA; Sheng W; Jin K; Xu X Sci Rep; 2015 Jan; 5():8041. PubMed ID: 25624018 [TBL] [Abstract][Full Text] [Related]
8. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling. Ortner G; Bayer M; Larionov A; Timofeev VB; Forchel A; Lyanda-Geller YB; Reinecke TL; Hawrylak P; Fafard S; Wasilewski Z Phys Rev Lett; 2003 Feb; 90(8):086404. PubMed ID: 12633447 [TBL] [Abstract][Full Text] [Related]
9. Double-donor complex in vertically coupled quantum dots in a threading magnetic field. Manjarres-García R; Escorcia-Salas GE; Manjarres-Torres J; Mikhailov ID; Sierra-Ortega J Nanoscale Res Lett; 2012 Sep; 7(1):531. PubMed ID: 23013550 [TBL] [Abstract][Full Text] [Related]
10. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. Fouladi-Oskouei J; Shojaei S; Liu Z J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851 [TBL] [Abstract][Full Text] [Related]
11. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. Duque CA; Porras-Montenegro N; Barticevic Z; Pacheco M; Oliveira LE J Phys Condens Matter; 2006 Feb; 18(6):1877-84. PubMed ID: 21697562 [TBL] [Abstract][Full Text] [Related]
12. Valley-selective energy transfer between quantum dots in atomically thin semiconductors. Baimuratov AS; Högele A Sci Rep; 2020 Oct; 10(1):16971. PubMed ID: 33046734 [TBL] [Abstract][Full Text] [Related]
13. Four-wave mixing dynamics of excitons in InGaAs self-assembled quantum dots. Borri P; Langbein W J Phys Condens Matter; 2007 Jul; 19(29):295201. PubMed ID: 21483053 [TBL] [Abstract][Full Text] [Related]
14. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field. Kushwaha MS J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549 [TBL] [Abstract][Full Text] [Related]
15. Exciton multiplication from first principles. Jaeger HM; Hyeon-Deuk K; Prezhdo OV Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of electronic properties of coupled quantum dots on wetting layers. Betcke MM; Voss H Nanotechnology; 2008 Apr; 19(16):165204. PubMed ID: 21825638 [TBL] [Abstract][Full Text] [Related]
18. The application of hartree approximation in exciton recombination energy for conical InAs/GaAs quantum dots. Yao W; Yu Z; Liu Y; Jia B J Nanosci Nanotechnol; 2010 Nov; 10(11):7612-5. PubMed ID: 21137994 [TBL] [Abstract][Full Text] [Related]
19. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. Zieliński M J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261 [TBL] [Abstract][Full Text] [Related]
20. Exciton Dipole-Dipole Interaction in a Single Coupled-Quantum-Dot Structure via Polarized Excitation. Kim H; Kim I; Kyhm K; Taylor RA; Kim JS; Song JD; Je KC; Dang LS Nano Lett; 2016 Dec; 16(12):7755-7760. PubMed ID: 27960477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]