These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 23092507)
1. Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil. Rhodes AH; Riding MJ; McAllister LE; Lee K; Semple KT Environ Sci Technol; 2012 Nov; 46(22):12445-51. PubMed ID: 23092507 [TBL] [Abstract][Full Text] [Related]
2. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652 [TBL] [Abstract][Full Text] [Related]
3. Linking desorption kinetics to phenanthrene biodegradation in soil. Rhodes AH; McAllister LE; Semple KT Environ Pollut; 2010 May; 158(5):1348-53. PubMed ID: 20172637 [TBL] [Abstract][Full Text] [Related]
4. Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Rhodes AH; Carlin A; Semple KT Environ Sci Technol; 2008 Feb; 42(3):740-5. PubMed ID: 18323096 [TBL] [Abstract][Full Text] [Related]
5. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Rhodes AH; Dew NM; Semple KT Environ Toxicol Chem; 2008 Jul; 27(7):1488-95. PubMed ID: 18260689 [TBL] [Abstract][Full Text] [Related]
6. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Rhodes AH; McAllister LE; Chen R; Semple KT Chemosphere; 2010 Apr; 79(4):463-9. PubMed ID: 20171713 [TBL] [Abstract][Full Text] [Related]
7. Influence of hydroxypropyl-beta-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil. Stroud JL; Tzima M; Paton GI; Semple KT Environ Pollut; 2009 Oct; 157(10):2678-83. PubMed ID: 19501437 [TBL] [Abstract][Full Text] [Related]
8. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. Badr T; Hanna K; de Brauer C J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442 [TBL] [Abstract][Full Text] [Related]
9. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability. Mittal M; Rockne KJ Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832 [TBL] [Abstract][Full Text] [Related]
10. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments. Gao H; Ma J; Xu L; Jia L Environ Sci Pollut Res Int; 2014; 21(14):8620-30. PubMed ID: 24705921 [TBL] [Abstract][Full Text] [Related]
11. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil. Sun M; Luo Y; Teng Y; Christie P; Jia Z; Li Z Biodegradation; 2013 Jun; 24(3):365-75. PubMed ID: 23001628 [TBL] [Abstract][Full Text] [Related]
12. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Sopeña F; Semple K; Sohi S; Bending G Chemosphere; 2012 Jun; 88(1):77-83. PubMed ID: 22464863 [TBL] [Abstract][Full Text] [Related]
13. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil. Ogbonnaya OU; Adebisi OO; Semple KT Environ Sci Process Impacts; 2014 Nov; 16(11):2635-43. PubMed ID: 25277257 [TBL] [Abstract][Full Text] [Related]
14. Assessing the phytoavailability of dieldrin residues in charcoal-amended soil using tenax extraction. Hilber I; Bucheli TD; Wyss GS; Schulin R J Agric Food Chem; 2009 May; 57(10):4293-8. PubMed ID: 19397375 [TBL] [Abstract][Full Text] [Related]
15. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique. Papadopoulos A; Reid BJ; Semple KT J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278 [TBL] [Abstract][Full Text] [Related]
16. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil. Wang P; Wang H; Wu L; Di H; He Y; Xu J Environ Pollut; 2012 Feb; 161():121-7. PubMed ID: 22230076 [TBL] [Abstract][Full Text] [Related]
17. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil. Marchal G; Smith KE; Rein A; Winding A; Wollensen de Jonge L; Trapp S; Karlson UG Environ Pollut; 2013 Oct; 181():200-10. PubMed ID: 23871817 [TBL] [Abstract][Full Text] [Related]
18. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics. Clegg H; Riding MJ; Oliver R; Jones KC; Semple KT J Hazard Mater; 2014 Aug; 278():336-42. PubMed ID: 24997252 [TBL] [Abstract][Full Text] [Related]
19. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Niqui-Arroyo JL; Bueno-Montes M; Posada-Baquero R; Ortega-Calvo JJ Environ Pollut; 2006 Jul; 142(2):326-32. PubMed ID: 16338043 [TBL] [Abstract][Full Text] [Related]
20. Enhanced desorption of phenanthrene from soils using hydroxypropyl-beta-cyclodextrin: experimental results and model predictions. Ko SO; Yoo HC J Environ Sci Health B; 2003 Nov; 38(6):829-41. PubMed ID: 14649712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]