BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23092791)

  • 1. Endothelial tip cells in ocular angiogenesis: potential target for anti-angiogenesis therapy.
    Siemerink MJ; Klaassen I; Van Noorden CJ; Schlingemann RO
    J Histochem Cytochem; 2013 Feb; 61(2):101-15. PubMed ID: 23092791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification.
    Kang TY; Bocci F; Nie Q; Onuchic JN; Levchenko A
    Elife; 2024 Feb; 12():. PubMed ID: 38376371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity.
    Smith TL; Oubaha M; Cagnone G; Boscher C; Kim JS; El Bakkouri Y; Zhang Y; Chidiac R; Corriveau J; Delisle C; Andelfinger GU; Sapieha P; Joyal JS; Gratton JP
    Cell Mol Life Sci; 2021 Dec; 79(1):37. PubMed ID: 34971428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis.
    Nakahara T; Morita A; Yagasaki R; Mori A; Sakamoto K
    Biol Pharm Bull; 2017; 40(12):2045-2049. PubMed ID: 29199229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Girdin and its phosphorylation dynamically regulate neonatal vascular development and pathological neovascularization in the retina.
    Ito T; Komeima K; Yasuma T; Enomoto A; Asai N; Asai M; Iwase S; Takahashi M; Terasaki H
    Am J Pathol; 2013 Feb; 182(2):586-96. PubMed ID: 23195430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation.
    Zarkada G; Howard JP; Xiao X; Park H; Bizou M; Leclerc S; Künzel SE; Boisseau B; Li J; Cagnone G; Joyal JS; Andelfinger G; Eichmann A; Dubrac A
    Dev Cell; 2021 Aug; 56(15):2237-2251.e6. PubMed ID: 34273276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrinsic Notch ligand Delta-like 1 regulates tip cell selection and vascular branching morphogenesis.
    Napp LC; Augustynik M; Paesler F; Krishnasamy K; Woiterski J; Limbourg A; Bauersachs J; Drexler H; Le Noble F; Limbourg FP
    Circ Res; 2012 Feb; 110(4):530-5. PubMed ID: 22282195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis.
    Hellström M; Phng LK; Hofmann JJ; Wallgard E; Coultas L; Lindblom P; Alva J; Nilsson AK; Karlsson L; Gaiano N; Yoon K; Rossant J; Iruela-Arispe ML; Kalén M; Gerhardt H; Betsholtz C
    Nature; 2007 Feb; 445(7129):776-80. PubMed ID: 17259973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive and negative feedback mechanisms controlling tip/stalk cell identity during sprouting angiogenesis.
    Margadant C
    Angiogenesis; 2020 May; 23(2):75-77. PubMed ID: 31993833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism.
    Kim J; Oh WJ; Gaiano N; Yoshida Y; Gu C
    Genes Dev; 2011 Jul; 25(13):1399-411. PubMed ID: 21724832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNAI1, an endothelial-mesenchymal transition transcription factor, promotes the early phase of ocular neovascularization.
    Sun JX; Chang TF; Li MH; Sun LJ; Yan XC; Yang ZY; Liu Y; Xu WQ; Lv Y; Su JB; Liang L; Han H; Dou GR; Wang YS
    Angiogenesis; 2018 Aug; 21(3):635-652. PubMed ID: 29675549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy.
    Watanabe D; Suzuma K; Matsui S; Kurimoto M; Kiryu J; Kita M; Suzuma I; Ohashi H; Ojima T; Murakami T; Kobayashi T; Masuda S; Nagao M; Yoshimura N; Takagi H
    N Engl J Med; 2005 Aug; 353(8):782-92. PubMed ID: 16120858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostate specific membrane antigen (PSMA) regulates angiogenesis independently of VEGF during ocular neovascularization.
    Grant CL; Caromile LA; Ho V; Durrani K; Rahman MM; Claffey KP; Fong GH; Shapiro LH
    PLoS One; 2012; 7(7):e41285. PubMed ID: 22815987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the Nuclear Receptor RORγ and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia.
    Talia DM; Deliyanti D; Agrotis A; Wilkinson-Berka JL
    Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1186-96. PubMed ID: 27055905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization.
    Zhu Y; Tan W; Demetriades AM; Cai Y; Gao Y; Sui A; Lu Q; Shen X; Jiang C; Xie B; Sun X
    Immunology; 2016 Apr; 147(4):414-28. PubMed ID: 26694999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natriuretic Peptides Attenuate Retinal Pathological Neovascularization Via Cyclic Guanosine Monophosphate Signaling in Pericytes and Astrocytes.
    Špiranec Spes K; Hupp S; Werner F; Koch F; Völker K; Krebes L; Kämmerer U; Heinze KG; Braunger BM; Kuhn M
    Arterioscler Thromb Vasc Biol; 2020 Jan; 40(1):159-174. PubMed ID: 31619060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of transient receptor potential canonical channel 4 inhibits vascular endothelial growth factor-induced retinal neovascularization.
    Song HB; Jun HO; Kim JH; Fruttiger M; Kim JH
    Cell Calcium; 2015 Feb; 57(2):101-8. PubMed ID: 25605522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evogliptin, a dipeptidyl peptidase-4 inhibitor, attenuates pathological retinal angiogenesis by suppressing vascular endothelial growth factor-induced Arf6 activation.
    Seo S; Kim MK; Kim RI; Yeo Y; Kim KL; Suh W
    Exp Mol Med; 2020 Oct; 52(10):1744-1753. PubMed ID: 33051573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effects of rapamycin on the retinal vascular bed during the vaso-obliteration phase in mouse oxygen-induced retinopathy model.
    Zhang J; Zhu M; Ruan L; Jiang C; Yang Q; Chang Q; Huang X
    FASEB J; 2020 Dec; 34(12):15822-15836. PubMed ID: 33103304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy.
    Cao R; Jensen LD; Söll I; Hauptmann G; Cao Y
    PLoS One; 2008 Jul; 3(7):e2748. PubMed ID: 18648503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.