BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23092858)

  • 1. Long term culture of cells patterned on glass via membrane-tethered oligonucleotides.
    Sakurai K; Hoffecker IT; Iwata H
    Biomaterials; 2013 Jan; 34(2):361-70. PubMed ID: 23092858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell patterning on polylactic acid through surface-tethered oligonucleotides.
    Matsui T; Arima Y; Takemoto N; Iwata H
    Acta Biomater; 2015 Feb; 13():32-41. PubMed ID: 25462847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials.
    Massia SP; Hubbell JA
    J Biomed Mater Res; 1991 Feb; 25(2):223-42. PubMed ID: 1829082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic surface plasmon resonance: direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches.
    Heaton RJ; Peterson AW; Georgiadis RM
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3701-4. PubMed ID: 11259682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General method for modification of liposomes for encoded assembly on supported bilayers.
    Yoshina-Ishii C; Miller GP; Kraft ML; Kool ET; Boxer SG
    J Am Chem Soc; 2005 Feb; 127(5):1356-7. PubMed ID: 15686351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode.
    Koyama S
    J Biosci Bioeng; 2011 May; 111(5):574-83. PubMed ID: 21277827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging via widefield surface plasmon resonance microscope for studying bone cell interactions with micropatterned ECM proteins.
    Sefat F; Denyer MC; Youseffi M
    J Microsc; 2011 Mar; 241(3):282-90. PubMed ID: 21118224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-step cell patterning on planar and complex curved surfaces by precision spraying of polymers.
    De Silva MN; Paulsen J; Renn MJ; Odde DJ
    Biotechnol Bioeng; 2006 Apr; 93(5):919-27. PubMed ID: 16358279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific nuclease-mediated release of cells tethered by oligonucleotide phospholipids.
    Hoffecker IT; Takemoto N; Arima Y; Iwata H
    Biomaterials; 2015; 53():318-29. PubMed ID: 25890730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of different supramolecular architectures for oligonucleotide biosensing.
    Mir M; Alvarez M; Azzaroni O; Knoll W
    Langmuir; 2008 Nov; 24(22):13001-6. PubMed ID: 18947242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion.
    Anamelechi CC; Truskey GA; Reichert WM
    Biomaterials; 2005 Dec; 26(34):6887-96. PubMed ID: 15990164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2005 Dec; 26(34):7057-67. PubMed ID: 16023712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the initial attachment and subsequent behavior of rat oral epithelial cells cultured on titanium.
    Shiraiwa M; Goto T; Yoshinari M; Koyano K; Tanaka T
    J Periodontol; 2002 Aug; 73(8):852-60. PubMed ID: 12211493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating DNA hybridization on an amine-functionalized silicon substrate.
    Monti S; Cacelli I; Ferretti A; Prampolini G; Barone V
    J Phys Chem B; 2010 Jul; 114(25):8341-9. PubMed ID: 20533843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent attachment of hybridizable oligonucleotides to glass supports.
    Joos B; Kuster H; Cone R
    Anal Biochem; 1997 Apr; 247(1):96-101. PubMed ID: 9126377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfaces for tuning of oligonucleotide biosensing selectivity based on surface-initiated atom transfer radical polymerization on glass and silicon substrates.
    Wong AK; Krull UJ
    Anal Chim Acta; 2009 Apr; 639(1-2):1-12. PubMed ID: 19345752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge.
    Smulevitch SV; Simmons CG; Norton JC; Wise TW; Corey DR
    Nat Biotechnol; 1996 Dec; 14(13):1700-4. PubMed ID: 9634855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of hairpin-containing single-stranded DNA by oligonucleotides containing internal acridine derivatives.
    François JC; Hélène C
    Bioconjug Chem; 1999; 10(3):439-46. PubMed ID: 10346876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of oligonucleotides onto a glass support via disulfide bonds: A method for preparation of DNA microarrays.
    Rogers YH; Jiang-Baucom P; Huang ZJ; Bogdanov V; Anderson S; Boyce-Jacino MT
    Anal Biochem; 1999 Jan; 266(1):23-30. PubMed ID: 9887210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.