These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
473 related articles for article (PubMed ID: 23092881)
1. Nucleic acid modifications with epigenetic significance. Fu Y; He C Curr Opin Chem Biol; 2012 Dec; 16(5-6):516-24. PubMed ID: 23092881 [TBL] [Abstract][Full Text] [Related]
2. Charting oxidized methylcytosines at base resolution. Wu H; Zhang Y Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715 [TBL] [Abstract][Full Text] [Related]
3. Whole-Genome Mapping of Epigenetic Modification of 5-Formylcytosine at Single-Base Resolution by Chemical Labeling Enrichment and Deamination Sequencing. Ding JH; Li G; Xiong J; Liu FL; Xie NB; Ji TT; Wang M; Guo X; Feng YQ; Ci W; Yuan BF Anal Chem; 2024 Mar; 96(11):4726-4735. PubMed ID: 38450632 [TBL] [Abstract][Full Text] [Related]
4. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Song CX; Szulwach KE; Dai Q; Fu Y; Mao SQ; Lin L; Street C; Li Y; Poidevin M; Wu H; Gao J; Liu P; Li L; Xu GL; Jin P; He C Cell; 2013 Apr; 153(3):678-91. PubMed ID: 23602153 [TBL] [Abstract][Full Text] [Related]
6. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
7. Structural insight into substrate preference for TET-mediated oxidation. Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525 [TBL] [Abstract][Full Text] [Related]
9. TET1-Mediated Oxidation of 5-Formylcytosine (5fC) to 5-Carboxycytosine (5caC) in RNA. Basanta-Sanchez M; Wang R; Liu Z; Ye X; Li M; Shi X; Agris PF; Zhou Y; Huang Y; Sheng J Chembiochem; 2017 Jan; 18(1):72-76. PubMed ID: 27805801 [TBL] [Abstract][Full Text] [Related]
10. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109 [TBL] [Abstract][Full Text] [Related]
11. Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Wu H; Wu X; Zhang Y Nat Protoc; 2016 Jun; 11(6):1081-100. PubMed ID: 27172168 [TBL] [Abstract][Full Text] [Related]
12. Genomic distribution and possible functions of DNA hydroxymethylation in the brain. Wen L; Tang F Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Wu H; Zhang Y Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206 [TBL] [Abstract][Full Text] [Related]
14. An Overview of Global, Local, and Base-Resolution Methods for the Detection of 5-Hydroxymethylcytosine in Genomic DNA. Erlitzki N; Kohli RM Methods Mol Biol; 2024; 2842():325-352. PubMed ID: 39012604 [TBL] [Abstract][Full Text] [Related]
15. High-Resolution Analysis of 5-Hydroxymethylcytosine by TET-Assisted Bisulfite Sequencing. Huang Z; Meng Y; Szabó PE; Kohli RM; Pfeifer GP Methods Mol Biol; 2021; 2198():321-331. PubMed ID: 32822042 [TBL] [Abstract][Full Text] [Related]
16. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Caldwell BA; Liu MY; Prasasya RD; Wang T; DeNizio JE; Leu NA; Amoh NYA; Krapp C; Lan Y; Shields EJ; Bonasio R; Lengner CJ; Kohli RM; Bartolomei MS Mol Cell; 2021 Feb; 81(4):859-869.e8. PubMed ID: 33352108 [TBL] [Abstract][Full Text] [Related]
17. Potential functional roles of DNA demethylation intermediates. Song CX; He C Trends Biochem Sci; 2013 Oct; 38(10):480-4. PubMed ID: 23932479 [TBL] [Abstract][Full Text] [Related]
18. Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation. Abakir A; Alenezi F; Ruzov A Methods Mol Biol; 2021; 2198():311-319. PubMed ID: 32822041 [TBL] [Abstract][Full Text] [Related]
19. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Inoue A; Shen L; Dai Q; He C; Zhang Y Cell Res; 2011 Dec; 21(12):1670-6. PubMed ID: 22124233 [TBL] [Abstract][Full Text] [Related]
20. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]