These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23093201)

  • 1. Carbon nanotube fibers for electrochemical applications: effect of enhanced interfaces by an acid treatment.
    Meng F; Zhao J; Ye Y; Zhang X; Li Q
    Nanoscale; 2012 Dec; 4(23):7464-8. PubMed ID: 23093201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing.
    Zhong XH; Wang R; Wen YY
    Phys Chem Chem Phys; 2013 Mar; 15(11):3861-5. PubMed ID: 23399977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced mechanical strength and electrical conductivity of carbon-nanotube/TiC hybrid fibers.
    Yi Q; Dai X; Zhao J; Sun Y; Lou Y; Su X; Li Q; Sun B; Zheng H; Shen M; Wang Q; Zou G
    Nanoscale; 2013 Aug; 5(15):6923-7. PubMed ID: 23787809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Engineered Polyaniline/Sulfur-Doped TiO
    Li C; Wang Z; Li S; Cheng J; Zhang Y; Zhou J; Yang D; Tong DG; Wang B
    ACS Appl Mater Interfaces; 2018 May; 10(21):18390-18399. PubMed ID: 29727153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin carbon nanotube fibrils of high electrochemical capacitance.
    Ma J; Tang J; Zhang H; Shinya N; Qin LC
    ACS Nano; 2009 Nov; 3(11):3679-83. PubMed ID: 19877714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers.
    Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q
    Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn.
    Foroughi J; Spinks GM; Ghorbani SR; Kozlov ME; Safaei F; Peleckis G; Wallace GG; Baughman RH
    Nanoscale; 2012 Feb; 4(3):940-5. PubMed ID: 22173836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-irradiated carbon nanotube yarn as substrate for high-performance fiber supercapacitors.
    Su F; Miao M; Niu H; Wei Z
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2553-60. PubMed ID: 24484219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode.
    Wang DW; Li F; Zhao J; Ren W; Chen ZG; Tan J; Wu ZS; Gentle I; Lu GQ; Cheng HM
    ACS Nano; 2009 Jul; 3(7):1745-52. PubMed ID: 19489559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning array morphology for high-strength carbon-nanotube fibers.
    Zheng L; Sun G; Zhan Z
    Small; 2010 Jan; 6(1):132-7. PubMed ID: 19902432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric.
    Qian H; Kucernak AR; Greenhalgh ES; Bismarck A; Shaffer MS
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6113-22. PubMed ID: 23668320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nitrogen doping from pyrolyzed ionic liquid in carbon nanotube fibers: enhanced mechanical and electrical properties.
    Park OK; Kim HJ; Hwang JY; Kim SM; Jeong Y; Lee JK; Ku BC
    Nanotechnology; 2015 Feb; 26(7):075706. PubMed ID: 25629600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices.
    Sun H; You X; Deng J; Chen X; Yang Z; Ren J; Peng H
    Adv Mater; 2014 May; 26(18):2868-73. PubMed ID: 24464762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of thick dielectrophoretic carbon nanotube fibers.
    Plaado M; Mononen RM; Lõhmus R; Kink I; Saal K
    Nanotechnology; 2011 Jul; 22(30):305711. PubMed ID: 21730751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.
    Kumar NA; Choi HJ; Shin YR; Chang DW; Dai L; Baek JB
    ACS Nano; 2012 Feb; 6(2):1715-23. PubMed ID: 22276770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors.
    Wang G; Kim SK; Wang MC; Zhai T; Munukutla S; Girolami GS; Sempsrott PJ; Nam S; Braun PV; Lyding JW
    ACS Nano; 2020 Jan; 14(1):632-639. PubMed ID: 31877019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials.
    Jo C; An S; Kim Y; Shim J; Yoon S; Lee J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5695-704. PubMed ID: 22434145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes.
    Zhou R; Meng C; Zhu F; Li Q; Liu C; Fan S; Jiang K
    Nanotechnology; 2010 Aug; 21(34):345701. PubMed ID: 20683140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.