These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23093591)

  • 1. MuMoD: a Bayesian approach to detect multiple modes of protein-DNA binding from genome-wide ChIP data.
    Narlikar L
    Nucleic Acids Res; 2013 Jan; 41(1):21-32. PubMed ID: 23093591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
    Mitra S; Biswas A; Narlikar L
    PLoS Comput Biol; 2018 Apr; 14(4):e1006090. PubMed ID: 29684008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A penalized Bayesian approach to predicting sparse protein-DNA binding landscapes.
    Levinson M; Zhou Q
    Bioinformatics; 2014 Mar; 30(5):636-43. PubMed ID: 24115169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells.
    Liu T
    Methods Mol Biol; 2014; 1150():81-95. PubMed ID: 24743991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein of Interest to Identified Predicted Binding Sites Within a Promoter.
    Read JE
    Methods Mol Biol; 2017; 1651():23-32. PubMed ID: 28801897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.
    Chen CY; Morris Q; Mitchell JA
    BMC Genomics; 2012 Apr; 13():152. PubMed ID: 22537144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feature-based approach to modeling protein-DNA interactions.
    Sharon E; Lubliner S; Segal E
    PLoS Comput Biol; 2008 Aug; 4(8):e1000154. PubMed ID: 18725950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transdimensional Bayesian model for pattern recognition in DNA sequences.
    Li SM; Wakefield J; Self S
    Biostatistics; 2008 Oct; 9(4):668-85. PubMed ID: 18349034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of high-resolution 3D intrachromosomal interactions aided by Bayesian network modeling.
    Zhang X; Branciamore S; Gogoshin G; Rodin AS; Riggs AD
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10359-E10368. PubMed ID: 29133398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ; Plath K; Zhou Q
    Bioinformatics; 2010 Nov; 26(22):2826-32. PubMed ID: 20870645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites.
    Hogart A; Lichtenberg J; Ajay SS; Anderson S; ; Margulies EH; Bodine DM
    Genome Res; 2012 Aug; 22(8):1407-18. PubMed ID: 22684279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data.
    Valouev A; Johnson DS; Sundquist A; Medina C; Anton E; Batzoglou S; Myers RM; Sidow A
    Nat Methods; 2008 Sep; 5(9):829-34. PubMed ID: 19160518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.
    Hutchins AP; Choo SH; Mistri TK; Rahmani M; Woon CT; Ng CK; Jauch R; Robson P
    Stem Cells; 2013 Feb; 31(2):269-81. PubMed ID: 23169531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.