These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23093809)

  • 1. The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.
    Satzinger KJ; Brown KA; Westervelt RM
    J Appl Phys; 2012 Sep; 112(6):64510. PubMed ID: 23093809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High spatial resolution Kelvin probe force microscopy with coaxial probes.
    Brown KA; Satzinger KJ; Westervelt RM
    Nanotechnology; 2012 Mar; 23(11):115703. PubMed ID: 22369870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the cantilever in Kelvin probe force microscopy measurements.
    Elias G; Glatzel T; Meyer E; Schwarzman A; Boag A; Rosenwaks Y
    Beilstein J Nanotechnol; 2011; 2():252-60. PubMed ID: 21977437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed digitization of the amplitude and frequency in open-loop sideband frequency-modulation Kelvin probe force microscopy.
    Stan G
    Nanotechnology; 2020 Jun; 31(38):385706. PubMed ID: 32516761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection.
    Collins L; Okatan MB; Li Q; Kravenchenko II; Lavrik NV; Kalinin SV; Rodriguez BJ; Jesse S
    Nanotechnology; 2015 May; 26(17):175707. PubMed ID: 25851168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.
    Collins L; Belianinov A; Somnath S; Balke N; Kalinin SV; Jesse S
    Sci Rep; 2016 Aug; 6():30557. PubMed ID: 27514987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
    Collins L; Ahmadi M; Wu T; Hu B; Kalinin SV; Jesse S
    ACS Nano; 2017 Sep; 11(9):8717-8729. PubMed ID: 28780850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface potential modeling and reconstruction in Kelvin probe force microscopy.
    Xu J; Wu Y; Li W; Xu J
    Nanotechnology; 2017 Sep; 28(36):365705. PubMed ID: 28664875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifrequency Kelvin probe force microscopy on self assembled molecular layers and quantitative assessment of images' quality.
    Kopiec D; Jóźwiak G; Moczała M; Sierakowski A; Gotszalk T
    Ultramicroscopy; 2018 Nov; 194():100-107. PubMed ID: 30099332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Kelvin Probe Force Microscopy.
    Geng J; Zhang H; Meng X; Gao H; Rong W; Xie H
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32719-32728. PubMed ID: 35816692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping.
    Jakob DS; Li N; Zhou H; Xu XG
    Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kelvin probe force microscopy in liquid using electrochemical force microscopy.
    Collins L; Jesse S; Kilpatrick JI; Tselev A; Okatan MB; Kalinin SV; Rodriguez BJ
    Beilstein J Nanotechnol; 2015; 6():201-14. PubMed ID: 25671164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.
    Xie H; Zhang H; Hussain D; Meng X; Song J; Sun L
    Langmuir; 2017 Mar; 33(11):2725-2733. PubMed ID: 28263608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water.
    Kilpatrick JI; Kargin E; Rodriguez BJ
    Beilstein J Nanotechnol; 2022; 13():922-943. PubMed ID: 36161252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy.
    Li S; Zhou Y; Zi Y; Zhang G; Wang ZL
    ACS Nano; 2016 Feb; 10(2):2528-35. PubMed ID: 26824304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.