BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23094087)

  • 1. Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia.
    Lee YJ; Johnson KR; Hallenbeck JM
    PLoS One; 2012; 7(10):e47787. PubMed ID: 23094087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation.
    Bernstock JD; Lee YJ; Peruzzotti-Jametti L; Southall N; Johnson KR; Maric D; Volpe G; Kouznetsova J; Zheng W; Pluchino S; Hallenbeck JM
    J Cereb Blood Flow Metab; 2016 Feb; 36(2):426-41. PubMed ID: 26661196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in microRNA expression related to ischemia-reperfusion injury in the kidney of the thirteen-lined ground squirrel during torpor.
    Erman A; Hawkins LJ; Storey KB
    Biochimie; 2024 May; 225():40-48. PubMed ID: 38705508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torpor-responsive microRNAs in the heart of the Monito del monte, Dromiciops gliroides.
    Breedon SA; Varma A; Quintero-Galvis JF; Gaitán-Espitia JD; Mejías C; Nespolo RF; Storey KB
    Biofactors; 2023; 49(5):1061-1073. PubMed ID: 37219063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotection: lessons from hibernators.
    Dave KR; Christian SL; Perez-Pinzon MA; Drew KL
    Comp Biochem Physiol B Biochem Mol Biol; 2012 May; 162(1-3):1-9. PubMed ID: 22326449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities and barriers to translating the hibernation phenotype for neurocritical care.
    Drew KL; Bhowmick S; Laughlin BW; Goropashnaya AV; Tøien Ø; Sugiura MH; Wong A; Pourrezaei K; Barati Z; Chen CY
    Front Neurol; 2023; 14():1009718. PubMed ID: 36779060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfide catabolism in hibernation and neuroprotection.
    Ichinose F; Hindle A
    Nitric Oxide; 2024 May; 146():19-23. PubMed ID: 38521487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the mechanisms underlying neuronal death in ischemia using in vitro oxygen-glucose deprivation: potential involvement of protein SUMOylation.
    Cimarosti H; Henley JM
    Neuroscientist; 2008 Dec; 14(6):626-36. PubMed ID: 19029060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUMO and ischemic tolerance.
    Lee YJ; Hallenbeck JM
    Neuromolecular Med; 2013 Dec; 15(4):771-81. PubMed ID: 23775726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global SUMOylation is a molecular mechanism underlying hypothermia-induced ischemic tolerance.
    Lee YJ; Mou Y; Klimanis D; Bernstock JD; Hallenbeck JM
    Front Cell Neurosci; 2014; 8():416. PubMed ID: 25538566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic study of Uba5 enzyme and the Ufm1 conjugation pathway.
    Gavin JM; Hoar K; Xu Q; Ma J; Lin Y; Chen J; Chen W; Bruzzese FJ; Harrison S; Mallender WD; Bump NJ; Sintchak MD; Bence NF; Li P; Dick LR; Gould AE; Chen JJ
    J Biol Chem; 2014 Aug; 289(33):22648-22658. PubMed ID: 24966333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia.
    Silveirinha V; Stephens GJ; Cimarosti H
    J Neurochem; 2013 Dec; 127(5):580-91. PubMed ID: 23786482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative high-throughput screening identifies cytoprotective molecules that enhance SUMO conjugation via the inhibition of SUMO-specific protease (SENP)2.
    Bernstock JD; Ye D; Smith JA; Lee YJ; Gessler FA; Yasgar A; Kouznetsova J; Jadhav A; Wang Z; Pluchino S; Zheng W; Simeonov A; Hallenbeck JM; Yang W
    FASEB J; 2018 Mar; 32(3):1677-1691. PubMed ID: 29146736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development.
    Yoo HM; Kang SH; Kim JY; Lee JE; Seong MW; Lee SW; Ka SH; Sou YS; Komatsu M; Tanaka K; Lee ST; Noh DY; Baek SH; Jeon YJ; Chung CH
    Mol Cell; 2014 Oct; 56(2):261-274. PubMed ID: 25219498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitin-fold modifier 1 inhibits apoptosis by suppressing the endoplasmic reticulum stress response in Raw264.7 cells.
    Hu X; Pang Q; Shen Q; Liu H; He J; Wang J; Xiong J; Zhang H; Chen F
    Int J Mol Med; 2014 Jun; 33(6):1539-46. PubMed ID: 24714921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caging the elephant: selective autophagy tackles giant intracellular protein crystals.
    Habisov S; Kirkin V
    Mol Cell; 2015 Apr; 58(1):5-7. PubMed ID: 25839431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ufmylation of ASC1 is essential for breast cancer development.
    Cancer Discov; 2014 Nov; 4(11):OF10. PubMed ID: 25367951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mallory-Denk Body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH).
    Liu H; Gong M; French BA; Li J; Tillman B; French SW
    Exp Mol Pathol; 2014 Dec; 97(3):477-83. PubMed ID: 25290169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ufm1 cascade.
    Daniel J; Liebau E
    Cells; 2014 Jun; 3(2):627-38. PubMed ID: 24921187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal and regional differences in gene expression in the brain of a hibernating mammal.
    Schwartz C; Hampton M; Andrews MT
    PLoS One; 2013; 8(3):e58427. PubMed ID: 23526982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.