These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23094325)

  • 1. Overview of current additive manufacturing technologies and selected applications.
    Horn TJ; Harrysson OL
    Sci Prog; 2012; 95(Pt 3):255-82. PubMed ID: 23094325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs.
    Luo Y; Akkineni AR; Gelinsky M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):279-85. PubMed ID: 24844004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress of three-dimensional printing technique in joint surgery].
    Wang F; Ren X; Yang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):272-5. PubMed ID: 24844002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of three-dimensional printing technique in orthopaedics].
    Luo Q; Lau TW; Fang X; Leung F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):268-71. PubMed ID: 24844001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Tension-Assisted Additive Manufacturing of Tubular, Multicomponent Biomaterials.
    Guzzi EA; Ragelle H; Tibbitt MW
    Methods Mol Biol; 2021; 2147():149-160. PubMed ID: 32840818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polylactides in additive biomanufacturing.
    Poh PSP; Chhaya MP; Wunner FM; De-Juan-Pardo EM; Schilling AF; Schantz JT; van Griensven M; Hutmacher DW
    Adv Drug Deliv Rev; 2016 Dec; 107():228-246. PubMed ID: 27492211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique].
    Zhang W; He J; Li X; Liu Y; Bian W; Li D; Jin Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):314-7. PubMed ID: 24844011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface tension-assisted additive manufacturing.
    Ragelle H; Tibbitt MW; Wu SY; Castillo MA; Cheng GZ; Gangadharan SP; Anderson DG; Cima MJ; Langer R
    Nat Commun; 2018 Mar; 9(1):1184. PubMed ID: 29567939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printing and prototyping of tissues and scaffolds.
    Derby B
    Science; 2012 Nov; 338(6109):921-6. PubMed ID: 23161993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereolithography in tissue engineering.
    Skoog SA; Goering PL; Narayan RJ
    J Mater Sci Mater Med; 2014 Mar; 25(3):845-56. PubMed ID: 24306145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Facilitated Additive Manufacturing Enables Fabrication of Biocompatible Neural Devices.
    Behrens A; Stieghorst J; Doll T; Froriep UP
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33227962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler.
    Kuhnt T; Camarero-Espinosa S
    Carbohydr Polym; 2021 Jan; 252():117159. PubMed ID: 33183610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Additively Manufactured Structures for Biomedical Applications: A Review of the Additive Manufacturing Processes Applied to the Biomedical Sector.
    Calignano F; Galati M; Iuliano L; Minetola P
    J Healthc Eng; 2019; 2019():9748212. PubMed ID: 30992744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on fabrication of 3D printed biomaterials using optical methodologies for tissue engineering applications.
    John P; Antony IR; Whenish R; Jinoop AN
    Proc Inst Mech Eng H; 2022 Nov; 236(11):1583-1594. PubMed ID: 36112752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging technologies in arthroplasty: additive manufacturing.
    Banerjee S; Kulesha G; Kester M; Mont MA
    J Knee Surg; 2014 Jun; 27(3):185-91. PubMed ID: 24764230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.