These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hybrids of organic molecules and flat, oxide-free silicon: high-density monolayers, electronic properties, and functionalization. Li Y; Calder S; Yaffe O; Cahen D; Haick H; Kronik L; Zuilhof H Langmuir; 2012 Jul; 28(26):9920-9. PubMed ID: 22587009 [TBL] [Abstract][Full Text] [Related]
3. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. Ciampi S; Harper JB; Gooding JJ Chem Soc Rev; 2010 Jun; 39(6):2158-83. PubMed ID: 20393648 [TBL] [Abstract][Full Text] [Related]
4. Reactivity of selectively terminated single crystal silicon surfaces. Perrine KA; Teplyakov AV Chem Soc Rev; 2010 Aug; 39(8):3256-74. PubMed ID: 20596551 [TBL] [Abstract][Full Text] [Related]
5. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Fabre B Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977 [TBL] [Abstract][Full Text] [Related]
7. Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces. Thissen P; Peixoto T; Longo RC; Peng W; Schmidt WG; Cho K; Chabal YJ J Am Chem Soc; 2012 May; 134(21):8869-74. PubMed ID: 22554133 [TBL] [Abstract][Full Text] [Related]
8. One step growth of protein antifouling surfaces: monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces. Cecchet F; De Meersman B; Demoustier-Champagne S; Nysten B; Jonas AM Langmuir; 2006 Jan; 22(3):1173-81. PubMed ID: 16430281 [TBL] [Abstract][Full Text] [Related]
9. Chemical modification of self-assembled silane based monolayers by surface reactions. Haensch C; Hoeppener S; Schubert US Chem Soc Rev; 2010 Jun; 39(6):2323-34. PubMed ID: 20424728 [TBL] [Abstract][Full Text] [Related]
10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
11. Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C-C bond nearest the silicon surface. Puniredd SR; Assad O; Haick H J Am Chem Soc; 2008 Oct; 130(41):13727-34. PubMed ID: 18803387 [TBL] [Abstract][Full Text] [Related]
15. High-resolution soft X-ray photoelectron spectroscopic studies and scanning auger microscopy studies of the air oxidation of alkylated silicon(111) surfaces. Webb LJ; Michalak DJ; Biteen JS; Brunschwig BS; Chan AS; Knapp DW; Meyer HM; Nemanick EJ; Traub MC; Lewis NS J Phys Chem B; 2006 Nov; 110(46):23450-9. PubMed ID: 17107197 [TBL] [Abstract][Full Text] [Related]
16. Controlled, low-coverage metal oxide activation of silicon for organic functionalization: unraveling the phosphonate bond. Thissen P; Vega A; Peixoto T; Chabal YJ Langmuir; 2012 Dec; 28(50):17494-505. PubMed ID: 23163566 [TBL] [Abstract][Full Text] [Related]
17. Highly stable organic modification of Si(111) surfaces: towards reacting Si with further functionalities while preserving the desirable chemical properties of full Si-C atop site terminations. Puniredd SR; Assad O; Haick H J Am Chem Soc; 2008 Jul; 130(29):9184-5. PubMed ID: 18582044 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Herzer N; Hoeppener S; Schubert US Chem Commun (Camb); 2010 Aug; 46(31):5634-52. PubMed ID: 20593102 [TBL] [Abstract][Full Text] [Related]
19. Growth and reactions of SiOx/Si nanostructures on surface-templated molecule corrals. Liu Y; Zhang Z; Wells MC; Beebe TP Langmuir; 2005 Sep; 21(19):8883-91. PubMed ID: 16142974 [TBL] [Abstract][Full Text] [Related]
20. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction. Xu YJ; Fu X Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]