BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23095367)

  • 1. Programmable self-assembly of carbon nanotubes assisted by reversible denaturation of a protein.
    Nithiyasri P; Balaji K; Brindha P; Parthasarathy M
    Nanotechnology; 2012 Nov; 23(46):465603. PubMed ID: 23095367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy.
    Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.
    Lou K; Zhu Z; Zhang H; Wang Y; Wang X; Cao J
    Chem Biol Interact; 2016 Jan; 243():54-61. PubMed ID: 26626329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation.
    Zhang Z; Yang X; Chen X; Zhang M; Luo L; Peng M; Yao S
    Anal Bioanal Chem; 2011 Nov; 401(9):2855-63. PubMed ID: 21909663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin.
    Li L; Lin R; He H; Jiang L; Gao M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():45-51. PubMed ID: 23291228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a bovine serum albumin diligand complex with rutin and single-walled carbon nanotubes for the reduction of cytotoxicity.
    Tian R; Long X; Yang Z; Lu N; Peng YY
    Biophys Chem; 2020 Jan; 256():106268. PubMed ID: 31707064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy.
    Murayama K; Tomida M
    Biochemistry; 2004 Sep; 43(36):11526-32. PubMed ID: 15350138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Shaken, not stable": dispersion mechanism and dynamics of protein-dispersed nanotubes studied via spectroscopy.
    Edri E; Regev O
    Langmuir; 2009 Sep; 25(18):10459-65. PubMed ID: 19685894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens.
    Parra J; Abad-Somovilla A; Mercader JV; Taton TA; Abad-Fuentes A
    J Control Release; 2013 Sep; 170(2):242-51. PubMed ID: 23735572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes for delivery of small molecule drugs.
    Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH effects on BSA-dispersed carbon nanotubes studied by spectroscopy-enhanced composition evaluation techniques.
    Edri E; Regev O
    Anal Chem; 2008 Jun; 80(11):4049-54. PubMed ID: 18459735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fluorescence study on the interactions between carbon nanotubes and bovine serum albumin].
    Li SS; He H; Chen Z; Zha J; Chuong PH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2689-92. PubMed ID: 21137401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exfoliated and water dispersible biocarbon nanotubes for enzymology applications.
    Kalluri A; Puglia MK; Malhotra M; Kumar CV
    Methods Enzymol; 2020; 630():407-430. PubMed ID: 31931996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the conformational state of albumin conjugated to gold nanoclusters: A self-assembly pathway to giant superstructures unraveled.
    Kluz M; Nieznańska H; Dec R; Dzięcielewski I; Niżyński B; Ścibisz G; Puławski W; Staszczak G; Klein E; Smalc-Koziorowska J; Dzwolak W
    PLoS One; 2019; 14(6):e0218975. PubMed ID: 31247048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.
    Ding Y; Tian R; Yang Z; Chen J; Lu N
    Biophys Chem; 2017 Mar; 222():1-6. PubMed ID: 28042968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution.
    Fu K; Huang W; Lin Y; Zhang D; Hanks TW; Rao AM; Sun YP
    J Nanosci Nanotechnol; 2002 Oct; 2(5):457-61. PubMed ID: 12908278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin.
    Chakraborty S; Joshi P; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    Langmuir; 2011 Jun; 27(12):7722-31. PubMed ID: 21591651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Proton Conduction in Denatured Bovine Serum Albumin-Coated Nafion Membranes.
    Jia W; Wu P
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39768-39776. PubMed ID: 30387596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bovine serum albumin and single walled carbon nanotube on the photophysical properties of zinc octacarboxy phthalocyanine.
    Ogbodu RO; Nyokong T
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():81-7. PubMed ID: 24231742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.