BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23095471)

  • 1. Hierarchical Naive Bayes for genetic association studies.
    Malovini A; Barbarini N; Bellazzi R; de Michelis F
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S6. PubMed ID: 23095471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies.
    Sinoquet C
    BMC Bioinformatics; 2018 Mar; 19(1):106. PubMed ID: 29587628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bag of Naïve Bayes: biomarker selection and classification from genome-wide SNP data.
    Sambo F; Trifoglio E; Di Camillo B; Toffolo GM; Cobelli C
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S2. PubMed ID: 23095127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
    Kostem E; Lozano JA; Eskin E
    Genetics; 2011 Jun; 188(2):449-60. PubMed ID: 21467568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical Naïve Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays.
    Demichelis F; Magni P; Piergiorgi P; Rubin MA; Bellazzi R
    BMC Bioinformatics; 2006 Nov; 7():514. PubMed ID: 17125514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data.
    Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M
    Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting genome structure in association analysis.
    Kim S; Xing EP
    J Comput Biol; 2014 Apr; 21(4):345-60. PubMed ID: 21548809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.
    Hoggart CJ; Whittaker JC; De Iorio M; Balding DJ
    PLoS Genet; 2008 Jul; 4(7):e1000130. PubMed ID: 18654633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localizing putative markers in genetic association studies by incorporating linkage disequilibrium into bayesian hierarchical models.
    Fridley BL; Jenkins GD
    Hum Hered; 2010; 70(1):63-73. PubMed ID: 20551675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixture SNPs effect on phenotype in genome-wide association studies.
    Wang L; Shen H; Liu H; Guo G
    BMC Genomics; 2015 Feb; 16(1):3. PubMed ID: 25649116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies.
    Cowman T; Koyutürk M
    Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction.
    Sun X; Fernando R; Dekkers J
    Genet Sel Evol; 2016 Oct; 48(1):77. PubMed ID: 27729012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical Bayesian network approach for linkage disequilibrium modeling and data-dimensionality reduction prior to genome-wide association studies.
    Mourad R; Sinoquet C; Leray P
    BMC Bioinformatics; 2011 Jan; 12():16. PubMed ID: 21226914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian Partitioning Model for the Detection of Multilocus Effects in Case-Control Studies.
    Ray D; Li X; Pan W; Pankow JS; Basu S
    Hum Hered; 2015; 79(2):69-79. PubMed ID: 26044550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.
    Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F;
    Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of untyped SNPs: maximum likelihood and imputation methods.
    Hu YJ; Lin DY
    Genet Epidemiol; 2010 Dec; 34(8):803-15. PubMed ID: 21104886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization.
    Wen X; Pique-Regi R; Luca F
    PLoS Genet; 2017 Mar; 13(3):e1006646. PubMed ID: 28278150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling interactions with known risk loci-a Bayesian model averaging approach.
    Ferreira T; Marchini J
    Ann Hum Genet; 2011 Jan; 75(1):1-9. PubMed ID: 21118191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating autosomal genotypes with realistic linkage disequilibrium and a spiked-in genetic effect.
    Shi M; Umbach DM; Wise AS; Weinberg CR
    BMC Bioinformatics; 2018 Jan; 19(1):2. PubMed ID: 29291710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical HLA alleles tag SNP in families from Antioquia with type 1 diabetes mellitus.
    Sarrazola DC; Rodríguez AM; Toro M; Vélez A; García-Ramírez J; Lopera MV; Álvarez CM; González VB; Alfaro JM; Pineda-Trujillo N
    Biomedica; 2018 Sep; 38(3):329-337. PubMed ID: 30335238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.