These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23095672)

  • 1. Transformer proteins.
    Knauer SH; Artsimovitch I; Rösch P
    Cell Cycle; 2012 Dec; 11(23):4289-90. PubMed ID: 23095672
    [No Abstract]   [Full Text] [Related]  

  • 2. NusG-Spt5 proteins-Universal tools for transcription modification and communication.
    Tomar SK; Artsimovitch I
    Chem Rev; 2013 Nov; 113(11):8604-19. PubMed ID: 23638618
    [No Abstract]   [Full Text] [Related]  

  • 3. Transcription is regulated by NusA:NusG interaction.
    Strauß M; Vitiello C; Schweimer K; Gottesman M; Rösch P; Knauer SH
    Nucleic Acids Res; 2016 Jul; 44(12):5971-82. PubMed ID: 27174929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flipping states: a few key residues decide the winning conformation of the only universally conserved transcription factor.
    Shi D; Svetlov D; Abagyan R; Artsimovitch I
    Nucleic Acids Res; 2017 Sep; 45(15):8835-8843. PubMed ID: 28605514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.
    Kang JY; Mooney RA; Nedialkov Y; Saba J; Mishanina TV; Artsimovitch I; Landick R; Darst SA
    Cell; 2018 Jun; 173(7):1650-1662.e14. PubMed ID: 29887376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A NusE:NusG complex links transcription and translation.
    Burmann BM; Schweimer K; Luo X; Wahl MC; Stitt BL; Gottesman ME; Rösch P
    Science; 2010 Apr; 328(5977):501-4. PubMed ID: 20413501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for converting a general transcription factor into an operon-specific virulence regulator.
    Belogurov GA; Vassylyeva MN; Svetlov V; Klyuyev S; Grishin NV; Vassylyev DG; Artsimovitch I
    Mol Cell; 2007 Apr; 26(1):117-29. PubMed ID: 17434131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG.
    Sevostyanova A; Belogurov GA; Mooney RA; Landick R; Artsimovitch I
    Mol Cell; 2011 Jul; 43(2):253-62. PubMed ID: 21777814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli.
    Cohen SE; Godoy VG; Walker GC
    J Bacteriol; 2009 Jan; 191(2):665-72. PubMed ID: 18996995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation: the next level of regulation.
    Knauer SH; Rösch P; Artsimovitch I
    RNA Biol; 2012 Dec; 9(12):1418-23. PubMed ID: 23131843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NusA interaction with the α subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition.
    Schweimer K; Prasch S; Sujatha PS; Bubunenko M; Gottesman ME; Rösch P
    Structure; 2011 Jul; 19(7):945-54. PubMed ID: 21742261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators.
    Mooney RA; Schweimer K; Rösch P; Gottesman M; Landick R
    J Mol Biol; 2009 Aug; 391(2):341-58. PubMed ID: 19500594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Transient, Excited Species of the Autoinhibited α-State of the Bacterial Transcription Factor RfaH May Represent an Early Intermediate on the Fold-Switching Pathway.
    Cai M; Agarwal N; Garrett DS; Baber J; Clore GM
    Biochemistry; 2024 Aug; 63(16):2030-2039. PubMed ID: 39088556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-termination Transcription Complex: Structure and Function.
    Hao Z; Epshtein V; Kim KH; Proshkin S; Svetlov V; Kamarthapu V; Bharati B; Mironov A; Walz T; Nudler E
    Mol Cell; 2021 Jan; 81(2):281-292.e8. PubMed ID: 33296676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor.
    Burmann BM; Knauer SH; Sevostyanova A; Schweimer K; Mooney RA; Landick R; Artsimovitch I; Rösch P
    Cell; 2012 Jul; 150(2):291-303. PubMed ID: 22817892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RfaH, a bacterial transcription antiterminator.
    Santangelo TJ; Roberts JW
    Mol Cell; 2002 Apr; 9(4):698-700. PubMed ID: 11983161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermotoga maritima NusG: domain interaction mediates autoinhibition and thermostability.
    Drögemüller J; Schneider C; Schweimer K; Strauß M; Wöhrl BM; Rösch P; Knauer SH
    Nucleic Acids Res; 2017 Jan; 45(1):446-460. PubMed ID: 27899597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible fold-switching controls the functional cycle of the antitermination factor RfaH.
    Zuber PK; Schweimer K; Rösch P; Artsimovitch I; Knauer SH
    Nat Commun; 2019 Feb; 10(1):702. PubMed ID: 30742024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a structural element that is essential for two functions of transcription factor NusG.
    Richardson LV; Richardson JP
    Biochim Biophys Acta; 2005 Jun; 1729(2):135-40. PubMed ID: 15890417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric control of the RNA polymerase by the elongation factor RfaH.
    Svetlov V; Belogurov GA; Shabrova E; Vassylyev DG; Artsimovitch I
    Nucleic Acids Res; 2007; 35(17):5694-705. PubMed ID: 17711918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.