These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23095672)

  • 21. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress.
    Shah IM; Wolf RE
    J Mol Biol; 2004 Oct; 343(3):513-32. PubMed ID: 15465042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH.
    Kolb KE; Hein PP; Landick R
    J Biol Chem; 2014 Jan; 289(2):1151-63. PubMed ID: 24275665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.
    Zhang J; Landick R
    Trends Biochem Sci; 2016 Apr; 41(4):293-310. PubMed ID: 26822487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA.
    Vassylyeva MN; Svetlov V; Klyuyev S; Devedjiev YD; Artsimovitch I; Vassylyev DG
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):1027-30. PubMed ID: 17012804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein disorder is positively correlated with gene expression in Escherichia coli.
    Paliy O; Gargac SM; Cheng Y; Uversky VN; Dunker AK
    J Proteome Res; 2008 Jun; 7(6):2234-45. PubMed ID: 18465893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.
    Martell DJ; Joshi CP; Gaballa A; Santiago AG; Chen TY; Jung W; Helmann JD; Chen P
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13467-72. PubMed ID: 26483469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interaction between RNA polymerase and the elongation factor NusA.
    Yang X; Lewis PJ
    RNA Biol; 2010; 7(3):272-5. PubMed ID: 20458190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional specialization of transcription elongation factors.
    Belogurov GA; Mooney RA; Svetlov V; Landick R; Artsimovitch I
    EMBO J; 2009 Jan; 28(2):112-22. PubMed ID: 19096362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insights into NusG regulating transcription elongation.
    Liu B; Steitz TA
    Nucleic Acids Res; 2017 Jan; 45(2):968-974. PubMed ID: 27899640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence-specific 1H, 13C, 15N resonance assignments and secondary structure of the carboxyterminal domain of the E. coli transcription factor NusA.
    Eisenmann A; Schwarz S; Rösch P; Schweimer K
    J Biomol NMR; 2004 Feb; 28(2):193-4. PubMed ID: 14755165
    [No Abstract]   [Full Text] [Related]  

  • 31. Functional regions of the N-terminal domain of the antiterminator RfaH.
    Belogurov GA; Sevostyanova A; Svetlov V; Artsimovitch I
    Mol Microbiol; 2010 Apr; 76(2):286-301. PubMed ID: 20132437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New discoveries linking transcription to DNA repair and damage tolerance pathways.
    Cohen SE; Walker GC
    Transcription; 2011; 2(1):37-40. PubMed ID: 21326909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locking the nontemplate DNA to control transcription.
    Nedialkov Y; Svetlov D; Belogurov GA; Artsimovitch I
    Mol Microbiol; 2018 Aug; 109(4):445-457. PubMed ID: 29758107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N protein from lambdoid phages transforms NusA into an antiterminator by modulating NusA-RNA polymerase flap domain interactions.
    Mishra S; Sen R
    Nucleic Acids Res; 2015 Jul; 43(12):5744-58. PubMed ID: 25990722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling.
    Conn AB; Diggs S; Tam TK; Blaha GM
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular biology. Syntheses that stay together.
    Roberts JW
    Science; 2010 Apr; 328(5977):436-7. PubMed ID: 20413480
    [No Abstract]   [Full Text] [Related]  

  • 37. In silico discovery of small molecules that inhibit RfaH recruitment to RNA polymerase.
    Svetlov D; Shi D; Twentyman J; Nedialkov Y; Rosen DA; Abagyan R; Artsimovitch I
    Mol Microbiol; 2018 Oct; 110(1):128-142. PubMed ID: 30069925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NusG/Spt5: are there common functions of this ubiquitous transcription elongation factor?
    Yakhnin AV; Babitzke P
    Curr Opin Microbiol; 2014 Apr; 18():68-71. PubMed ID: 24632072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SuhB is an integral part of the ribosomal antitermination complex and interacts with NusA.
    Dudenhoeffer BR; Schneider H; Schweimer K; Knauer SH
    Nucleic Acids Res; 2019 Jul; 47(12):6504-6518. PubMed ID: 31127279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RfaH May Oppose Silencing by H-NS and YmoA Proteins during Transcription Elongation.
    Wang B; Mittermeier M; Artsimovitch I
    J Bacteriol; 2022 Apr; 204(4):e0059921. PubMed ID: 35258322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.