These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23095737)

  • 1. Evaluation of adaptive relaxation of the rat stomach using an orally inserted balloon instead of surgical intervention by demonstrating the effects of capsaicin and Nω-nitro-L-arginine methylester.
    Uchida M; Shimizu K
    J Smooth Muscle Res; 2012; 48(4):97-104. PubMed ID: 23095737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of capsaicin-sensitive afferent neurons in receptive relaxation induced by gastric distension in rats.
    Taniguchi M; Mashita Y; Matsuzaka Y; Kato S; Takeuchi K
    Inflammopharmacology; 2007 Dec; 15(6):273-7. PubMed ID: 18236019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colonic distension on gastric adaptive relaxation in rats: barostatic evaluation using an orally introduced gastric balloon.
    Uchida M; Iwamoto C
    J Smooth Muscle Res; 2014; 50():78-84. PubMed ID: 26081370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of amino acids on gastric adaptive relaxation (accommodation) in rats as evaluated with a barostat.
    Uchida M; Iwamoto C
    J Smooth Muscle Res; 2016; 52(0):56-65. PubMed ID: 27558952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of capsaicin-sensitive sensory nerves in gastric adaptive relaxation in isolated guinea-pig stomachs.
    Uno H; Arakawa T; Fukuda T; Higuchi K; Kobayashi K
    Digestion; 1997; 58(3):232-9. PubMed ID: 9243118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential excitatory role of nitric oxide on 2-deoxy-d-glucose-induced gastric motility in rats.
    Sevgili AM; Balkanci DZ; Erdem A
    Clin Exp Pharmacol Physiol; 2017 Jun; 44(6):693-699. PubMed ID: 28294385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liu-Jun-Zi-Tang, a kampo medicine, promotes adaptive relaxation in isolated guinea pig stomachs.
    Hayakawa T; Arakawa T; Kase Y; Akiyama S; Ishige A; Takeda S; Sasaki H; Uno H; Fukuda T; Higuchi K; Kobayashi K
    Drugs Exp Clin Res; 1999; 25(5):211-8. PubMed ID: 10568209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide in the control of the gastric motility within the nucleus ambiguus of rats.
    Sun HZ; Zhao SZ; Ai HB
    J Physiol Pharmacol; 2012 Dec; 63(6):623-9. PubMed ID: 23388478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cerebral nitrergic pathway modulates endotoxin-induced changes in gastric motility.
    Quintana E; García-Zaragozá E; Martínez-Cuesta MA; Calatayud S; Esplugues JV; Barrachina MD
    Br J Pharmacol; 2001 Sep; 134(2):325-32. PubMed ID: 11564650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microinjection of l-glutamate into the nucleus ambiguus partially inhibits gastric motility through the NMDA receptor - nitric oxide pathway.
    Sun HZ; Zhao SZ; Ai HB
    Can J Physiol Pharmacol; 2014 Jun; 92(6):455-9. PubMed ID: 24830549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity.
    Glasgow I; Mattar K; Krantis A
    Am J Physiol; 1998 Nov; 275(5):G889-96. PubMed ID: 9815016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of NG-nitro-L-arginine methyl ester on vagally induced gastric relaxation in the anaesthetized rat.
    Lefebvre RA; Hasrat J; Gobert A
    Br J Pharmacol; 1992 Feb; 105(2):315-20. PubMed ID: 1559128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of dorsal motor vagal neurons evokes non-nicotinic receptor-mediated gastric relaxation.
    Krowicki ZK; Sivarao DV; Abrahams TP; Hornby PJ
    J Auton Nerv Syst; 1999 Sep; 77(2-3):83-9. PubMed ID: 10580290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ghrelin stimulates gastric motility of the guinea pig through activation of a capsaicin-sensitive neural pathway: in vivo and in vitro functional studies.
    Nakamura T; Onaga T; Kitazawa T
    Neurogastroenterol Motil; 2010 Apr; 22(4):446-52, e107. PubMed ID: 19840269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exacerbation of nonsteroidal anti-inflammatory drug-induced small intestinal lesions by antisecretory drugs in rats: the role of intestinal motility.
    Satoh H; Amagase K; Takeuchi K
    J Pharmacol Exp Ther; 2012 Nov; 343(2):270-7. PubMed ID: 22854201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME): requirement for bioactivation to the free acid, NG-nitro-L-arginine.
    Pfeiffer S; Leopold E; Schmidt K; Brunner F; Mayer B
    Br J Pharmacol; 1996 Jul; 118(6):1433-40. PubMed ID: 8832069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid.
    Desai KM; Sessa WC; Vane JR
    Nature; 1991 Jun; 351(6326):477-9. PubMed ID: 1675430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects of gastric adaptive relaxation, reflex after food intake for more food: involvement of capsaicin-sensitive sensory nerves and nitric oxide.
    Arakawa T; Uno H; Fukuda T; Higuchi K; Kobayashi K; Kuroki T
    J Smooth Muscle Res; 1997 Jun; 33(3):81-8. PubMed ID: 9533819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrergic Pathway Is the Main Contributing Mechanism in the Human Gastric Fundus Relaxation: An In Vitro Study.
    Min YW; Hong YS; Ko EJ; Lee JY; Ahn KD; Bae JM; Rhee PL
    PLoS One; 2016; 11(9):e0162146. PubMed ID: 27589594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of muscarinic and nicotinic receptor antagonism on rat gastric motor activity.
    Janssen P; Karlsson LK; Nielsen MA; Gillberg PG; Hultin L
    Pharmacology; 2010; 85(5):272-9. PubMed ID: 20375537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.