BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23096572)

  • 1. Reengineering of subtilisin Carlsberg for oxidative resistance.
    Vojcic L; Despotovic D; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    Biol Chem; 2013 Jan; 394(1):79-87. PubMed ID: 23096572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg.
    Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights on activity and stability of subtilisin E towards guanidinium chloride and sodium dodecylsulfate.
    Li Z; Roccatano D; Lorenz M; Martinez R; Schwaneberg U
    J Biotechnol; 2014 Jan; 169():87-94. PubMed ID: 24280236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent assay for directed evolution of perhydrolases.
    Despotovic D; Vojcic L; Prodanovic R; Martinez R; Maurer KH; Schwaneberg U
    J Biomol Screen; 2012 Jul; 17(6):796-805. PubMed ID: 22392808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mutants of subtilisin E].
    Yang YH; Wu YJ; Jiang L; Zhu LQ; Yang SL
    Sheng Wu Gong Cheng Xue Bao; 2000 Mar; 16(2):147-9. PubMed ID: 10976314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Enantioselectivity of Subtilisin Carlsberg towards Secondary Alcohols by Protein Engineering.
    Dorau R; Görbe T; Svedendahl Humble M
    Chembiochem; 2018 Feb; 19(4):338-346. PubMed ID: 29105250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg.
    Eschenburg S; Genov N; Peters K; Fittkau S; Stoeva S; Wilson KS; Betzel C
    Eur J Biochem; 1998 Oct; 257(2):309-18. PubMed ID: 9826175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Weng M; Deng X; Bao W; Zhu L; Wu J; Cai Y; Jia Y; Zheng Z; Zou G
    Biochem Biophys Res Commun; 2015 Sep; 465(3):580-6. PubMed ID: 26291268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of subtilisin E into a highly active and guanidinium chloride- and sodium dodecylsulfate-tolerant protease.
    Li Z; Roccatano D; Lorenz M; Schwaneberg U
    Chembiochem; 2012 Mar; 13(5):691-9. PubMed ID: 22408062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala.
    Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC
    Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering subtilisin into a fluoride-triggered processing protease useful for one-step protein purification.
    Ruan B; Fisher KE; Alexander PA; Doroshko V; Bryan PN
    Biochemistry; 2004 Nov; 43(46):14539-46. PubMed ID: 15544324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme.
    Schülein R; Kreft J; Gonski S; Goebel W
    Mol Gen Genet; 1991 May; 227(1):137-43. PubMed ID: 1904534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo.
    McPhalen CA; James MN
    Biochemistry; 1988 Aug; 27(17):6582-98. PubMed ID: 3064813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.
    Weng M; Zheng Z; Bao W; Cai Y; Yin Y; Zou G
    Biochim Biophys Acta; 2009 Nov; 1794(11):1566-72. PubMed ID: 19631297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface charge engineering of a Bacillus gibsonii subtilisin protease.
    Jakob F; Martinez R; Mandawe J; Hellmuth H; Siegert P; Maurer KH; Schwaneberg U
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6793-802. PubMed ID: 23179617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification.
    Grøn H; Bech LM; Branner S; Breddam K
    Eur J Biochem; 1990 Dec; 194(3):897-901. PubMed ID: 2269308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random mutagenesis of the weak calcium binding site in subtilisin Carlsberg and screening for thermostability by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Schrörs W; Riesner D
    Adv Exp Med Biol; 1996; 379():171-82. PubMed ID: 8796322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide.
    Chen K; Arnold FH
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5618-22. PubMed ID: 8516309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.