BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23096942)

  • 1. Phyllochron dynamics during the course of late shoot development might be affected by reproductive development in rice (Oryza sativa L.).
    Itoh Y; Shimizu H
    Dev Genes Evol; 2012 Nov; 222(6):341-50. PubMed ID: 23096942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative trait loci for phyllochron and tillering in rice.
    Miyamoto N; Goto Y; Matsui M; Ukai Y; Morita M; Nemoto K
    Theor Appl Genet; 2004 Aug; 109(4):700-6. PubMed ID: 15221143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic dissection of an alien chromosomal segment may enable the production of a rice (Oryza sativa L.) genotype showing shoot developmental instability.
    Itoh Y; Sato Y
    Dev Genes Evol; 2015 Apr; 225(2):63-78. PubMed ID: 25677854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact shoot and leafy head 1, a mutation affects leaf initiation and developmental transition in rice (Oryza sativa L).
    Zhu QH; Dennis ES; Upadhyaya NM
    Plant Cell Rep; 2007 Apr; 26(4):421-7. PubMed ID: 17111113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice.
    Xie K; Shen J; Hou X; Yao J; Li X; Xiao J; Xiong L
    Plant Physiol; 2012 Mar; 158(3):1382-94. PubMed ID: 22271747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties.
    Clerget B; Dingkuhn M; Gozé E; Rattunde HF; Ney B
    Ann Bot; 2008 Mar; 101(4):579-94. PubMed ID: 18230624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phyllochron of well-watered and water deficit mature peach trees varies with shoot type and vigour.
    Davidson A; Da Silva D; DeJong TM
    AoB Plants; 2017 Sep; 9(5):plx042. PubMed ID: 29026512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plant architecture of rice (Oryza sativa).
    Wang Y; Li J
    Plant Mol Biol; 2005 Sep; 59(1):75-84. PubMed ID: 16217603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.).
    Xu J; Zha M; Li Y; Ding Y; Chen L; Ding C; Wang S
    Plant Cell Rep; 2015 Sep; 34(9):1647-62. PubMed ID: 26024762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice.
    Sakamoto T; Kobayashi M; Itoh H; Tagiri A; Kayano T; Tanaka H; Iwahori S; Matsuoka M
    Plant Physiol; 2001 Mar; 125(3):1508-16. PubMed ID: 11244129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Image-based Phenomic Analysis Reveals the Complex Genetic Architecture of Shoot Growth Dynamics in Rice (
    Campbell MT; Du Q; Liu K; Brien CJ; Berger B; Zhang C; Walia H
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice.
    Endo-Higashi N; Izawa T
    Plant Cell Physiol; 2011 Jun; 52(6):1083-94. PubMed ID: 21565907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression analysis suggests that FON2-LIKE CLE PROTEIN1 is involved in rice leaf development.
    Ohmori Y; Yasui Y; Hirano HY
    Genes Genet Syst; 2014; 89(2):87-91. PubMed ID: 25224975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.).
    Wahab MMS; Akkareddy S; Shanthi P; Latha P
    Mol Biol Rep; 2020 Mar; 47(3):1935-1948. PubMed ID: 32067160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice.
    Abe M; Yoshikawa T; Nosaka M; Sakakibara H; Sato Y; Nagato Y; Itoh J
    Plant Physiol; 2010 Nov; 154(3):1335-46. PubMed ID: 20805329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant development controls leaf area expansion in alfalfa plants competing for light.
    Baldissera TC; Frak E; Carvalho PC; Louarn G
    Ann Bot; 2014 Jan; 113(1):145-57. PubMed ID: 24201140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronism of leaf and tiller emergence relative to position and to main stem development stage in a rice cultivar.
    Jaffuel S; Dauzat J
    Ann Bot; 2005 Feb; 95(3):401-12. PubMed ID: 15601682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular control of flowering in response to day length in rice.
    Brambilla V; Fornara F
    J Integr Plant Biol; 2013 May; 55(5):410-8. PubMed ID: 23331542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of earliness and lateness genes for heading to different photoperiods, and specific response of a gene or a pair of genes to short day length in rice.
    Rana BB; Kamimukai M; Bhattarai M; Koide Y; Murai M
    Hereditas; 2019; 156():36. PubMed ID: 31889942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic interaction involving photoperiod-responsive Hd1 promotes early flowering under long-day conditions in rice.
    Subudhi PK; De Leon TB; Tapia R; Chai C; Karan R; Ontoy J; Singh PK
    Sci Rep; 2018 Feb; 8(1):2081. PubMed ID: 29391460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.