These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23097002)

  • 1. Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes.
    Beheshtian J; Baei MT; Peyghan AA; Bagheri Z
    J Mol Model; 2013 Feb; 19(2):943-9. PubMed ID: 23097002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.
    Peyghan AA; Noei M; Tabar MB
    J Mol Model; 2013 Aug; 19(8):3007-14. PubMed ID: 23564329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma-butyrolactone drug detection by Al-doped BC
    Ling-Yan W; Ai-Min L; Hamreh S
    J Mol Graph Model; 2020 Sep; 99():107632. PubMed ID: 32417724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of carbon monoxide on the pristine, B- and Al-doped C3N nanosheets.
    Pashangpour M; Peyghan AA
    J Mol Model; 2015 May; 21(5):116. PubMed ID: 25874725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction.
    Chen Y; Gao B; Zhao JX; Cai QH; Fu HG
    J Mol Model; 2012 May; 18(5):2043-54. PubMed ID: 21881853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide.
    Beheshtian J; Peyghan AA; Bagheri Z
    J Mol Model; 2013 Jun; 19(6):2197-203. PubMed ID: 23354475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 adsorption by nitrogen-doped carbon nanotubes predicted by density-functional theory with dispersion-correcting potentials.
    Mackie ID; DiLabio GA
    Phys Chem Chem Phys; 2011 Feb; 13(7):2780-7. PubMed ID: 21152662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico investigation on sensing of tyramine by boron and silicon doped C
    Pattanaik S; Vishwkarma AK; Yadav T; Shakerzadeh E; Sahu D; Chakroborty S; Tripathi PK; Zereffa EA; Malviya J; Barik A; Sarankar SK; Sharma P; Upadhye VJ; Wagadre S
    Sci Rep; 2023 Dec; 13(1):22264. PubMed ID: 38097755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon-doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity.
    Bian R; Zhao J; Fu H
    J Mol Model; 2013 Apr; 19(4):1667-75. PubMed ID: 23292251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study.
    Azam MA; Alias FM; Tack LW; Seman RNAR; Taib MFM
    J Mol Graph Model; 2017 Aug; 75():85-93. PubMed ID: 28531817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NH3 on a BC3 nanotube: effect of doping and decoration of aluminum.
    Peyghan AA; Tabar MB; Kakemam J
    J Mol Model; 2013 Sep; 19(9):3793-8. PubMed ID: 23793743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of amphetamine as a stimulant drug by pristine and doped C
    Alipour E; Maleki S; Razavipour N; Hajali N; Jahani S
    J Mol Model; 2021 May; 27(6):169. PubMed ID: 33991237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction investigation of single and multiple carbon monoxide molecules with Fe-, Ru-, and Os-doped single-walled carbon nanotubes by DFT study: applications to gas adsorption and detection nanomaterials.
    Tabtimsai C; Rakrai W; Phalinyot S; Wanno B
    J Mol Model; 2020 Jun; 26(7):186. PubMed ID: 32607821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can Si-doped graphene activate or dissociate O2 molecule?
    Chen Y; Yang XC; Liu YJ; Zhao JX; Cai QH; Wang XZ
    J Mol Graph Model; 2013 Feb; 39():126-32. PubMed ID: 23261882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study.
    Beheshtian J; Baei MT; Peyghan AA; Bagheri Z
    J Mol Model; 2012 Oct; 18(10):4745-50. PubMed ID: 22678082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes.
    Wu X; Yang JL; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and Stone-Wales defected single-walled carbon nanotubes.
    Tabtimsai C; Keawwangchai S; Nunthaboot N; Ruangpornvisuti V; Wanno B
    J Mol Model; 2012 Aug; 18(8):3941-9. PubMed ID: 22431225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
    de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M
    Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.