BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23097065)

  • 1. Complementary workflow for global phosphoproteome analysis.
    Li QR; Ning ZB; Yang XL; Wu JR; Zeng R
    Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach.
    Hennrich ML; Groenewold V; Kops GJ; Heck AJ; Mohammed S
    Anal Chem; 2011 Sep; 83(18):7137-43. PubMed ID: 21815630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tip-Based Fractionation of Batch-Enriched Phosphopeptides Facilitates Easy and Robust Phosphoproteome Analysis.
    Dehghani A; Gödderz M; Winter D
    J Proteome Res; 2018 Jan; 17(1):46-54. PubMed ID: 29083192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
    Han G; Ye M; Zhou H; Jiang X; Feng S; Jiang X; Tian R; Wan D; Zou H; Gu J
    Proteomics; 2008 Apr; 8(7):1346-61. PubMed ID: 18318008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity.
    Li QR; Ning ZB; Tang JS; Nie S; Zeng R
    J Proteome Res; 2009 Nov; 8(11):5375-81. PubMed ID: 19761217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
    Loroch S; Zahedi RP; Sickmann A
    Anal Chem; 2015 Feb; 87(3):1596-604. PubMed ID: 25405705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches.
    Zarei M; Sprenger A; Metzger F; Gretzmeier C; Dengjel J
    J Proteome Res; 2011 Aug; 10(8):3474-83. PubMed ID: 21682340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of online high-/low-pH reversed-phase-reversed-phase two-dimensional liquid chromatography for shotgun proteomics: a reversed-phase-strong cation exchange-reversed-phase approach.
    Kong RP; Siu SO; Lee SS; Lo C; Chu IK
    J Chromatogr A; 2011 Jun; 1218(23):3681-8. PubMed ID: 21531424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry.
    Dai J; Jin WH; Sheng QH; Shieh CH; Wu JR; Zeng R
    J Proteome Res; 2007 Jan; 6(1):250-62. PubMed ID: 17203969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteome of crab-eating macaque cerebral cortex characterized through multidimensional reversed-phase liquid chromatography/mass spectrometry with tandem anion/cation exchange columns.
    Quan Q; Feng J; Lui LT; Shi T; Chu IK
    J Chromatogr A; 2017 May; 1498():196-206. PubMed ID: 28126228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of phosphopeptides on strong anion-exchange capillary trap column for large-scale phosphoproteome analysis of microgram samples.
    Wang F; Han G; Yu Z; Jiang X; Sun S; Chen R; Ye M; Zou H
    J Sep Sci; 2010 Jul; 33(13):1879-87. PubMed ID: 20533337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shotgun proteome analysis utilising mixed mode (reversed phase-anion exchange chromatography) in conjunction with reversed phase liquid chromatography mass spectrometry analysis.
    Phillips HL; Williamson JC; van Elburg KA; Snijders AP; Wright PC; Dickman MJ
    Proteomics; 2010 Aug; 10(16):2950-60. PubMed ID: 20662100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Global Phosphoproteome Profiling of Jurkat T Cells by HIFU-TiO
    Carrera M; Cañas B; Lopez-Ferrer D
    Anal Chem; 2017 Sep; 89(17):8853-8862. PubMed ID: 28787133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.