BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23097233)

  • 1. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins.
    Yang W; Ren Q; Wu YN; Morris VK; Rey AA; Braet F; Kwan AH; Sunde M
    Biopolymers; 2013 Jan; 99(1):84-94. PubMed ID: 23097233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins.
    Morris VK; Sunde M
    Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins.
    Ball SR; Pham CLL; Lo V; Morris VK; Kwan AH; Sunde M
    Methods Mol Biol; 2020; 2073():55-72. PubMed ID: 31612436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus.
    Zykwinska A; Pihet M; Radji S; Bouchara JP; Cuenot S
    Biochim Biophys Acta; 2014 Jun; 1844(6):1137-44. PubMed ID: 24631542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin.
    Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W
    Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q; Kwan AH; Sunde M
    Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins.
    Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A
    J Biol Chem; 2021; 296():100728. PubMed ID: 33933454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of hydrophobin protein rodlets studied with atomic force spectroscopy in dynamic mode.
    Houmadi S; Rodriguez RD; Longobardi S; Giardina P; Fauré MC; Giocondo M; Lacaze E
    Langmuir; 2012 Feb; 28(5):2551-7. PubMed ID: 22181848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity.
    Kwan AH; Macindoe I; Vukasin PV; Morris VK; Kass I; Gupte R; Mark AE; Templeton MD; Mackay JP; Sunde M
    J Mol Biol; 2008 Oct; 382(3):708-20. PubMed ID: 18674544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability.
    Lo VC; Ren Q; Pham CL; Morris VK; Kwan AH; Sunde M
    Nanomaterials (Basel); 2014 Sep; 4(3):827-843. PubMed ID: 28344251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions.
    Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB
    Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for rodlet assembly in fungal hydrophobins.
    Kwan AH; Winefield RD; Sunde M; Matthews JM; Haverkamp RG; Templeton MD; Mackay JP
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3621-6. PubMed ID: 16537446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two forms and two faces, multiple states and multiple uses: Properties and applications of the self-assembling fungal hydrophobins.
    Ren Q; Kwan AH; Sunde M
    Biopolymers; 2013 Nov; 100(6):601-12. PubMed ID: 23913717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobins, the fungal coat unravelled.
    Wösten HA; de Vocht ML
    Biochim Biophys Acta; 2000 Sep; 1469(2):79-86. PubMed ID: 10998570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials.
    Lo V; I-Chun Lai J; Sunde M
    Adv Exp Med Biol; 2019; 1174():161-185. PubMed ID: 31713199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer thickness of hydrophobin films leads to oscillation in wettability.
    Gruner LJ; Ostermann K; Rödel G
    Langmuir; 2012 May; 28(17):6942-9. PubMed ID: 22458322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers.
    Yu L; Zhang B; Szilvay GR; Sun R; Jänis J; Wang Z; Feng S; Xu H; Linder MB; Qiao M
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1677-1685. PubMed ID: 18524922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils.
    Gravagnuolo AM; Longobardi S; Luchini A; Appavou MS; De Stefano L; Notomista E; Paduano L; Giardina P
    Biomacromolecules; 2016 Mar; 17(3):954-64. PubMed ID: 26828412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation.
    Chang HJ; Lee M; Na S
    Colloids Surf B Biointerfaces; 2019 Jan; 173():128-138. PubMed ID: 30278361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.