BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 23097304)

  • 1. Assembly of graphene nanosheets and SiO2 nanoparticles towards transparent, antireflective, conductive, and superhydrophilic multifunctional hybrid films.
    Zhu J; Xu L; He J
    Chemistry; 2012 Dec; 18(51):16393-401. PubMed ID: 23097304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films.
    Zhu J; Cao Y; He J
    J Colloid Interface Sci; 2014 Apr; 420():119-26. PubMed ID: 24559709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications.
    Zhu J; He J
    Nanoscale; 2012 Jun; 4(11):3558-66. PubMed ID: 22573099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets.
    Hong TK; Lee DW; Choi HJ; Shin HS; Kim BS
    ACS Nano; 2010 Jul; 4(7):3861-8. PubMed ID: 20604532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of biomimetic high performance antireflective and antifogging film by spin-coating.
    Zhang L; Lü C; Li Y; Lin Z; Wang Z; Dong H; Wang T; Zhang X; Li X; Zhang J; Yang B
    J Colloid Interface Sci; 2012 May; 374(1):89-95. PubMed ID: 22360984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.
    Niu Z; Du J; Cao X; Sun Y; Zhou W; Hng HH; Ma J; Chen X; Xie S
    Small; 2012 Oct; 8(20):3201-8. PubMed ID: 22777966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells.
    Yin Z; Wu S; Zhou X; Huang X; Zhang Q; Boey F; Zhang H
    Small; 2010 Jan; 6(2):307-12. PubMed ID: 20039255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker.
    Zhu C; Guo S; Zhai Y; Dong S
    Langmuir; 2010 May; 26(10):7614-8. PubMed ID: 20073489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles.
    Li X; Du X; He J
    Langmuir; 2010 Aug; 26(16):13528-34. PubMed ID: 20695600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.
    Park JS; Cho SM; Kim WJ; Park J; Yoo PJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):360-8. PubMed ID: 21207942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings.
    Cebeci FC; Wu Z; Zhai L; Cohen RE; Rubner MF
    Langmuir; 2006 Mar; 22(6):2856-62. PubMed ID: 16519495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings.
    Li X; He J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5282-90. PubMed ID: 23719319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes.
    Jo K; Lee T; Choi HJ; Park JH; Lee DJ; Lee DW; Kim BS
    Langmuir; 2011 Mar; 27(5):2014-8. PubMed ID: 21226499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.
    Song N; Jiao D; Cui S; Hou X; Ding P; Shi L
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2924-2932. PubMed ID: 28045485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.
    Gao K; Shao Z; Wu X; Wang X; Li J; Zhang Y; Wang W; Wang F
    Carbohydr Polym; 2013 Aug; 97(1):243-51. PubMed ID: 23769544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of electrical conductivity and ferromagnetism in a hybrid material formed from reduced graphene oxide and manganese oxide.
    Murashima Y; Ohtani R; Matsui T; Takehira H; Yokota R; Nakamura M; Lindoy LF; Hayami S
    Dalton Trans; 2015 Mar; 44(11):5049-52. PubMed ID: 25697449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced graphene oxide nanoribbon networks: a novel approach towards scalable fabrication of transparent conductive films.
    He H; Li X; Wang J; Qiu T; Fang Y; Song Q; Luo B; Zhang X; Zhi L
    Small; 2013 Mar; 9(6):820-4. PubMed ID: 23213044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films.
    Min K; Han TH; Kim J; Jung J; Jung C; Hong SM; Koo CM
    J Colloid Interface Sci; 2012 Oct; 383(1):36-42. PubMed ID: 22795947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties.
    Xie G; Forslund M; Pan J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7444-55. PubMed ID: 24787038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene film doped with silver nanoparticles: self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility.
    Zhang P; Wang H; Zhang X; Xu W; Li Y; Li Q; Wei G; Su Z
    Biomater Sci; 2015 Jun; 3(6):852-60. PubMed ID: 26221845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.