These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23098085)

  • 1. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2.
    Tongay S; Zhou J; Ataca C; Lo K; Matthews TS; Li J; Grossman JC; Wu J
    Nano Lett; 2012 Nov; 12(11):5576-80. PubMed ID: 23098085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-induced indirect to direct bandgap transition in multilayer WSe2.
    Desai SB; Seol G; Kang JS; Fang H; Battaglia C; Kapadia R; Ager JW; Guo J; Javey A
    Nano Lett; 2014 Aug; 14(8):4592-7. PubMed ID: 24988370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional CaFCl: ultra-wide bandgap, strong interlayer quantum confinement, and n-type doping.
    Ye XJ; Zhu ZX; Meng L; Liu CS
    Phys Chem Chem Phys; 2020 Aug; 22(30):17213-17220. PubMed ID: 32677646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically Tunable Bandgaps in Bilayer MoSâ‚‚.
    Chu T; Ilatikhameneh H; Klimeck G; Rahman R; Chen Z
    Nano Lett; 2015 Dec; 15(12):8000-7. PubMed ID: 26560813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS
    Sarkar S; Mathew S; Chintalapati S; Rath A; Panahandeh-Fard M; Saha S; Goswami S; Tan SJR; Loh KP; Scott M; Venkatesan T
    ACS Nano; 2020 Dec; 14(12):16761-16769. PubMed ID: 33284605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling.
    Dhall R; Neupane MR; Wickramaratne D; Mecklenburg M; Li Z; Moore C; Lake RK; Cronin S
    Adv Mater; 2015 Mar; 27(9):1573-8. PubMed ID: 25589365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural defects in a nanomesh of bulk MoS
    Kim T; Kim D; Choi CH; Joung D; Park J; Shin JC; Kang SW
    Sci Rep; 2018 Apr; 8(1):6648. PubMed ID: 29703979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Few-Layer PbI
    Liu J; Sun Y; Zhou Y; Zhang C; Wang X; Wang L; Xiao M
    J Phys Chem Lett; 2019 Dec; 10(24):7863-7869. PubMed ID: 31791124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.
    Lv R; Robinson JA; Schaak RE; Sun D; Sun Y; Mallouk TE; Terrones M
    Acc Chem Res; 2015 Jan; 48(1):56-64. PubMed ID: 25490673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of indirect gap in monolayer WSe
    Hsu WT; Lu LS; Wang D; Huang JK; Li MY; Chang TR; Chou YC; Juang ZY; Jeng HT; Li LJ; Chang WH
    Nat Commun; 2017 Oct; 8(1):929. PubMed ID: 29030548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-layer MoS2 electronics.
    Lembke D; Bertolazzi S; Kis A
    Acc Chem Res; 2015 Jan; 48(1):100-10. PubMed ID: 25555202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2.
    Zhang Y; Chang TR; Zhou B; Cui YT; Yan H; Liu Z; Schmitt F; Lee J; Moore R; Chen Y; Lin H; Jeng HT; Mo SK; Hussain Z; Bansil A; Shen ZX
    Nat Nanotechnol; 2014 Feb; 9(2):111-5. PubMed ID: 24362235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures.
    Chen RS; Tang CC; Shen WC; Huang YS
    J Vis Exp; 2015 Dec; (106):e53200. PubMed ID: 26710105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.
    Chen X; Tan C; Yang Q; Meng R; Liang Q; Jiang J; Sun X; Yang DQ; Ren T
    Phys Chem Chem Phys; 2016 Jun; 18(24):16229-36. PubMed ID: 27250915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandgap modulation of MoS
    Zhao HQ; Mao X; Zhou D; Feng S; Shi X; Ma Y; Wei X; Mao Y
    Nanoscale; 2016 Dec; 8(45):18995-19003. PubMed ID: 27808314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional hybrid layered materials: strain engineering on the band structure of MoS
    Gu K; Yu S; Eshun K; Yuan H; Ye H; Tang J; Ioannou DE; Xiao C; Wang H; Li Q
    Nanotechnology; 2017 Sep; 28(36):365202. PubMed ID: 28627501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide.
    Li D; Cheng R; Zhou H; Wang C; Yin A; Chen Y; Weiss NO; Huang Y; Duan X
    Nat Commun; 2015 Jul; 6():7509. PubMed ID: 26130491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors.
    Kang J; Zhang L; Wei SH
    J Phys Chem Lett; 2016 Feb; 7(4):597-602. PubMed ID: 26800573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandgap prediction of two-dimensional materials using machine learning.
    Zhang Y; Xu W; Liu G; Zhang Z; Zhu J; Li M
    PLoS One; 2021; 16(8):e0255637. PubMed ID: 34388173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.