BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23098092)

  • 1. Enzymatic modification of flaxseed fibers.
    Maijala P; Mäkinen M; Galkin S; Fagerstedt K; Härkäsalmi T; Viikari L
    J Agric Food Chem; 2012 Nov; 60(44):10903-9. PubMed ID: 23098092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode of action of cellulases on dyed cotton with a reactive dye.
    Yamada M; Amano Y; Horikawa E; Nozaki K; Kanda T
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):45-50. PubMed ID: 15665466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis.
    Li X; Clarke K; Li K; Chen A
    Biotechnol Prog; 2012; 28(6):1389-99. PubMed ID: 22887935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane.
    Harrison MD; Geijskes J; Coleman HD; Shand K; Kinkema M; Palupe A; Hassall R; Sainz M; Lloyd R; Miles S; Dale JL
    Plant Biotechnol J; 2011 Oct; 9(8):884-96. PubMed ID: 21356003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J; Karlsson J; Lee D; Tjerneld F
    Biotechnol Bioeng; 1998 Sep; 59(5):621-34. PubMed ID: 10099380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative estimate of the effect of cellulase components during degradation of cotton fibers.
    Wang LS; Zhang YZ; Yang H; Gao PJ
    Carbohydr Res; 2004 Mar; 339(4):819-24. PubMed ID: 14980825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignification in the flax stem: evidence for an unusual lignin in bast fibers.
    Day A; Ruel K; Neutelings G; Crônier D; David H; Hawkins S; Chabbert B
    Planta; 2005 Oct; 222(2):234-45. PubMed ID: 15968509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and hydrolysis properties of engineered cellobiohydrolases and endoglucanases.
    Lu X; Feng X; Li X; Zhao J
    Bioresour Technol; 2018 Nov; 267():235-241. PubMed ID: 30025319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis.
    Wang L; Zhang Y; Gao P; Shi D; Liu H; Gao H
    Biotechnol Bioeng; 2006 Feb; 93(3):443-56. PubMed ID: 16196052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase-mediated coupling of nonpolar chains for the hydrophobization of lignocellulose.
    Garcia-Ubasart J; Vidal T; Torres AL; Rojas OJ
    Biomacromolecules; 2013 May; 14(5):1637-44. PubMed ID: 23570533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.
    Lu X; Wang C; Li X; Zhao J
    Bioresour Technol; 2017 Dec; 245(Pt A):819-825. PubMed ID: 28926914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy.
    Lee I; Evans BR; Woodward J
    Ultramicroscopy; 2000 Feb; 82(1-4):213-21. PubMed ID: 10741672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior.
    Frisoni G; Baiardo M; Scandola M; Lednická D; Cnockaert MC; Mergaert J; Swings J
    Biomacromolecules; 2001; 2(2):476-82. PubMed ID: 11749209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillium funiculosum.
    Karboune S; Geraert PA; Kermasha S
    J Agric Food Chem; 2008 Feb; 56(3):903-9. PubMed ID: 18177005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.
    Ogata M; Kameshima Y; Hattori T; Michishita K; Suzuki T; Kawagishi H; Totani K; Hiratake J; Usui T
    Carbohydr Res; 2010 Dec; 345(18):2623-9. PubMed ID: 21067711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems.
    Himmelsbach DS; Khalili S; Akin DE
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):99-108. PubMed ID: 9551642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of cellulosic secondary walls in flax fibers requires beta-galactosidase.
    Roach MJ; Mokshina NY; Badhan A; Snegireva AV; Hobson N; Deyholos MK; Gorshkova TA
    Plant Physiol; 2011 Jul; 156(3):1351-63. PubMed ID: 21596948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from cellulosic materials using cellulase-expressing yeast.
    Yanase S; Yamada R; Kaneko S; Noda H; Hasunuma T; Tanaka T; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2010 May; 5(5):449-55. PubMed ID: 20349451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved properties of micronized genetically modified flax fibers.
    Dymińska L; Szatkowski M; Wróbel-Kwiatkowska M; Zuk M; Kurzawa A; Syska W; Gągor A; Zawadzki M; Ptak M; Mączka M; Hanuza J; Szopa J
    J Biotechnol; 2012 Dec; 164(2):292-9. PubMed ID: 23353730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes.
    Kleywegt GJ; Zou JY; Divne C; Davies GJ; Sinning I; Stâhlberg J; Reinikainen T; Srisodsuk M; Teeri TT; Jones TA
    J Mol Biol; 1997 Sep; 272(3):383-97. PubMed ID: 9325098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.