These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
558 related articles for article (PubMed ID: 23098209)
1. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance. Wang R; Wang P; Yan X; Lang J; Peng C; Xue Q ACS Appl Mater Interfaces; 2012 Nov; 4(11):5800-6. PubMed ID: 23098209 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051 [TBL] [Abstract][Full Text] [Related]
3. A Facile and Low-Cost Route to Heteroatom Doped Porous Carbon Derived from Broussonetia Papyrifera Bark with Excellent Supercapacitance and CO2 Capture Performance. Wei T; Zhang Q; Wei X; Gao Y; Li H Sci Rep; 2016 Mar; 6():22646. PubMed ID: 26935397 [TBL] [Abstract][Full Text] [Related]
4. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Hou J; Cao C; Ma X; Idrees F; Xu B; Hao X; Lin W Sci Rep; 2014 Dec; 4():7260. PubMed ID: 25434348 [TBL] [Abstract][Full Text] [Related]
5. Efficient CO(2) capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids. Zhu X; Hillesheim PC; Mahurin SM; Wang C; Tian C; Brown S; Luo H; Veith GM; Han KS; Hagaman EW; Liu H; Dai S ChemSusChem; 2012 Oct; 5(10):1912-7. PubMed ID: 22907832 [TBL] [Abstract][Full Text] [Related]
6. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores. Wei H; Deng S; Hu B; Chen Z; Wang B; Huang J; Yu G ChemSusChem; 2012 Dec; 5(12):2354-60. PubMed ID: 23132775 [TBL] [Abstract][Full Text] [Related]
7. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. Wu XL; Wen T; Guo HL; Yang S; Wang X; Xu AW ACS Nano; 2013 Apr; 7(4):3589-97. PubMed ID: 23548083 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Du SH; Wang LQ; Fu XT; Chen MM; Wang CY Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820 [TBL] [Abstract][Full Text] [Related]
9. CO2 capture in different carbon materials. Jiménez V; Ramírez-Lucas A; Díaz JA; Sánchez P; Romero A Environ Sci Technol; 2012 Jul; 46(13):7407-14. PubMed ID: 22679919 [TBL] [Abstract][Full Text] [Related]
10. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292 [TBL] [Abstract][Full Text] [Related]
11. An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO₂ adsorption. Wang J; Liu Q Nanoscale; 2014 Apr; 6(8):4148-56. PubMed ID: 24603950 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods. Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368 [TBL] [Abstract][Full Text] [Related]
13. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Wang L; Mu G; Tian C; Sun L; Zhou W; Yu P; Yin J; Fu H ChemSusChem; 2013 May; 6(5):880-9. PubMed ID: 23606450 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical Porous and High Surface Area Tubular Carbon as Dye Adsorbent and Capacitor Electrode. Chen L; Ji T; Brisbin L; Zhu J ACS Appl Mater Interfaces; 2015 Jun; 7(22):12230-7. PubMed ID: 25980528 [TBL] [Abstract][Full Text] [Related]
15. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Xu J; Gao Q; Zhang Y; Tan Y; Tian W; Zhu L; Jiang L Sci Rep; 2014 Jul; 4():5545. PubMed ID: 24986670 [TBL] [Abstract][Full Text] [Related]
16. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials. Saleh M; Tiwari JN; Kemp KC; Yousuf M; Kim KS Environ Sci Technol; 2013 May; 47(10):5467-73. PubMed ID: 23621280 [TBL] [Abstract][Full Text] [Related]
17. Yeast-based microporous carbon materials for carbon dioxide capture. Shen W; He Y; Zhang S; Li J; Fan W ChemSusChem; 2012 Jul; 5(7):1274-9. PubMed ID: 22696279 [TBL] [Abstract][Full Text] [Related]
18. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. Choi S; Gray ML; Jones CW ChemSusChem; 2011 May; 4(5):628-35. PubMed ID: 21548105 [TBL] [Abstract][Full Text] [Related]
19. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density. Zhang Y; Tang Z Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941 [TBL] [Abstract][Full Text] [Related]
20. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]