These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Doig CL; Singh PK; Dhiman VK; Thorne JL; Battaglia S; Sobolewski M; Maguire O; O'Neill LP; Turner BM; McCabe CJ; Smiraglia DJ; Campbell MJ Carcinogenesis; 2013 Feb; 34(2):248-56. PubMed ID: 23087083 [TBL] [Abstract][Full Text] [Related]
3. VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription. Singh PK; Long MD; Battaglia S; Hu Q; Liu S; Sucheston-Campbell LE; Campbell MJ Epigenetics; 2015; 10(1):40-9. PubMed ID: 25494645 [TBL] [Abstract][Full Text] [Related]
5. The anti-proliferative effects of 1alpha,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Campbell MJ; Gombart AF; Kwok SH; Park S; Koeffler HP Oncogene; 2000 Oct; 19(44):5091-7. PubMed ID: 11042697 [TBL] [Abstract][Full Text] [Related]
6. Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Khanim FL; Gommersall LM; Wood VH; Smith KL; Montalvo L; O'Neill LP; Xu Y; Peehl DM; Stewart PM; Turner BM; Campbell MJ Oncogene; 2004 Sep; 23(40):6712-25. PubMed ID: 15300237 [TBL] [Abstract][Full Text] [Related]
7. Distinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to Trichostatin A and 1alpha,25-dihydroxyvitamin D3. Malinen M; Saramäki A; Ropponen A; Degenhardt T; Väisänen S; Carlberg C Nucleic Acids Res; 2008 Jan; 36(1):121-32. PubMed ID: 17999998 [TBL] [Abstract][Full Text] [Related]
8. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. Kim S; Shevde NK; Pike JW J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825 [TBL] [Abstract][Full Text] [Related]
9. Elevated NCOR1 disrupts PPARalpha/gamma signaling in prostate cancer and forms a targetable epigenetic lesion. Battaglia S; Maguire O; Thorne JL; Hornung LB; Doig CL; Liu S; Sucheston LE; Bianchi A; Khanim FL; Gommersall LM; Coulter HS; Rakha S; Giddings I; O'Neill LP; Cooper CS; McCabe CJ; Bunce CM; Campbell MJ Carcinogenesis; 2010 Sep; 31(9):1650-60. PubMed ID: 20466759 [TBL] [Abstract][Full Text] [Related]
10. DC-SCRIPT: AR and VDR regulator lost upon transformation of prostate epithelial cells. Ansems M; Karthaus N; Hontelez S; Aalders T; Looman MW; Verhaegh GW; Schalken JA; Adema GJ Prostate; 2012 Dec; 72(16):1708-17. PubMed ID: 22473304 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Seuter S; Pehkonen P; Heikkinen S; Carlberg C Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200 [TBL] [Abstract][Full Text] [Related]
12. LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer. Battaglia S; Karasik E; Gillard B; Williams J; Winchester T; Moser MT; Smiraglia DJ; Foster BA Clin Epigenetics; 2017; 9():82. PubMed ID: 28811844 [TBL] [Abstract][Full Text] [Related]
13. African American Prostate Cancer Displays Quantitatively Distinct Vitamin D Receptor Cistrome-transcriptome Relationships Regulated by BAZ1A. Siddappa M; Hussain S; Wani SA; White J; Tang H; Gray JS; Jafari H; Wu HC; Long MD; Elhussin I; Karanam B; Wang H; Morgan R; Hardiman G; Adelani IB; Rotimi SO; Murphy AR; Nonn L; Davis MB; Kittles RA; Hughes Halbert C; Sucheston-Campbell LE; Yates C; Campbell MJ Cancer Res Commun; 2023 Apr; 3(4):621-639. PubMed ID: 37082578 [TBL] [Abstract][Full Text] [Related]
14. VDR microRNA expression and epigenetic silencing of vitamin D signaling in melanoma cells. Essa S; Denzer N; Mahlknecht U; Klein R; Collnot EM; Tilgen W; Reichrath J J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):110-3. PubMed ID: 20153427 [TBL] [Abstract][Full Text] [Related]
15. Epigenetic control of a VDR-governed feed-forward loop that regulates p21(waf1/cip1) expression and function in non-malignant prostate cells. Thorne JL; Maguire O; Doig CL; Battaglia S; Fehr L; Sucheston LE; Heinaniemi M; O'Neill LP; McCabe CJ; Turner BM; Carlberg C; Campbell MJ Nucleic Acids Res; 2011 Mar; 39(6):2045-56. PubMed ID: 21088000 [TBL] [Abstract][Full Text] [Related]
16. Altered VDR-mediated transcriptional activity in prostate cancer stroma. Hidalgo AA; Paredes R; Garcia VM; Flynn G; Johnson CS; Trump DL; Onate SA J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):731-6. PubMed ID: 17368189 [TBL] [Abstract][Full Text] [Related]
17. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Murthy S; Agoulnik IU; Weigel NL Prostate; 2005 Sep; 64(4):362-72. PubMed ID: 15754350 [TBL] [Abstract][Full Text] [Related]
18. Vitamin D receptor content and transcriptional activity do not fully predict antiproliferative effects of vitamin D in human prostate cancer cell lines. Zhuang SH; Schwartz GG; Cameron D; Burnstein KL Mol Cell Endocrinol; 1997 Jan; 126(1):83-90. PubMed ID: 9027366 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of vitamin D analogs as therapeutic agents for prostate cancer. Chen TC; Holick MF; Lokeshwar BL; Burnstein KL; Schwartz GG Recent Results Cancer Res; 2003; 164():273-88. PubMed ID: 12899529 [TBL] [Abstract][Full Text] [Related]
20. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Zella LA; Kim S; Shevde NK; Pike JW Mol Endocrinol; 2006 Jun; 20(6):1231-47. PubMed ID: 16497728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]