These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23098730)

  • 1. Approaches to repairing the damaged spinal cord: overview.
    Becker D; McDonald JW
    Handb Clin Neurol; 2012; 109():445-61. PubMed ID: 23098730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring function after spinal cord injury.
    Becker D; Sadowsky CL; McDonald JW
    Neurologist; 2003 Jan; 9(1):1-15. PubMed ID: 12801427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies to restore motor functions after spinal cord injury.
    Boulenguez P; Vinay L
    Curr Opin Neurobiol; 2009 Dec; 19(6):587-600. PubMed ID: 19896827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-based transplantation strategies to promote plasticity following spinal cord injury.
    Ruff CA; Wilcox JT; Fehlings MG
    Exp Neurol; 2012 May; 235(1):78-90. PubMed ID: 21333647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New strategies for repairing the injured spinal cord: the role of stem cells.
    Garbossa D; Fontanella M; Fronda C; Benevello C; Muraca G; Ducati A; Vercelli A
    Neurol Res; 2006 Jul; 28(5):500-4. PubMed ID: 16808879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury.
    Myckatyn TM; Mackinnon SE; McDonald JW
    Transpl Immunol; 2004 Apr; 12(3-4):343-58. PubMed ID: 15157926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal repair and replacement in spinal cord injury.
    Bareyre FM
    J Neurol Sci; 2008 Feb; 265(1-2):63-72. PubMed ID: 17568612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current and future therapeutic strategies for functional repair of spinal cord injury.
    Tohda C; Kuboyama T
    Pharmacol Ther; 2011 Oct; 132(1):57-71. PubMed ID: 21640756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord.
    Zhang SX; Huang F; Gates M; Holmberg EG
    Brain Res; 2012 May; 1456():22-35. PubMed ID: 22516110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setting the stage for functional repair of spinal cord injuries: a cast of thousands.
    Ramer LM; Ramer MS; Steeves JD
    Spinal Cord; 2005 Mar; 43(3):134-61. PubMed ID: 15672094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of the injured spinal cord and the potential of embryonic stem cell transplantation.
    McDonald JW; Becker D; Holekamp TF; Howard M; Liu S; Lu A; Lu J; Platik MM; Qu Y; Stewart T; Vadivelu S
    J Neurotrauma; 2004 Apr; 21(4):383-93. PubMed ID: 15115588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A clinical perspective of spinal cord injury.
    Nandoe Tewarie RD; Hurtado A; Bartels RH; Grotenhuis JA; Oudega M
    NeuroRehabilitation; 2010; 27(2):129-39. PubMed ID: 20871142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury.
    Bunge MB; Wood PM
    Handb Clin Neurol; 2012; 109():523-40. PubMed ID: 23098734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of stem cells' hematopoietic stimulating factors therapy following spinal cord injury.
    Divani AA; Hussain MS; Magal E; Heary RF; Qureshi AI
    Ann Biomed Eng; 2007 Oct; 35(10):1647-56. PubMed ID: 17641973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of walking recovery after spinal cord injury.
    Scivoletto G; Di Donna V
    Brain Res Bull; 2009 Jan; 78(1):43-51. PubMed ID: 18639616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair and neurorehabilitation strategies for spinal cord injury.
    Ruff RL; McKerracher L; Selzer ME
    Ann N Y Acad Sci; 2008 Oct; 1142():1-20. PubMed ID: 18990118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.