BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 23098819)

  • 21. SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins.
    Binda O; Nassif C; Branton PE
    Oncogene; 2008 May; 27(24):3384-92. PubMed ID: 18193082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIRT1 and p53, effect on cancer, senescence and beyond.
    Yi J; Luo J
    Biochim Biophys Acta; 2010 Aug; 1804(8):1684-9. PubMed ID: 20471503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases.
    Jiao F; Gong Z
    Oxid Med Cell Longev; 2020; 2020():6782872. PubMed ID: 33014276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation.
    Sirotkin AV; Dekanová P; Harrath AH; Alwasel SH; Vašíček D
    Cell Tissue Res; 2014 Nov; 358(2):627-32. PubMed ID: 25027053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decreased SIRT1 expression in the peripheral blood of patients with Graves' disease.
    Yin Q; Shen L; Qi Y; Song D; Ye L; Peng Y; Wang Y; Jin Z; Ning G; Wang W; Lin D; Wang S
    J Endocrinol; 2020 Aug; 246(2):161-173. PubMed ID: 32485674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sirtuin 1 stabilization by HuR represses TNF-α- and glucose-induced E-selectin release and endothelial cell adhesiveness in vitro: relevance to human metabolic syndrome.
    Ceolotto G; De Kreutzenberg SV; Cattelan A; Fabricio AS; Squarcina E; Gion M; Semplicini A; Fadini GP; Avogaro A
    Clin Sci (Lond); 2014 Oct; 127(7):449-61. PubMed ID: 24702436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.
    Zhao S; Li J; Wang N; Zheng B; Li T; Gu Q; Xu X; Zheng Z
    Mol Med Rep; 2015 Oct; 12(4):6112-8. PubMed ID: 26238659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease.
    de Gregorio E; Colell A; Morales A; Marí M
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sirt1's systemic protective roles and its promise as a target in antiaging medicine.
    Tang BL
    Transl Res; 2011 May; 157(5):276-84. PubMed ID: 21497775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders.
    Song Y; Wu Z; Zhao P
    Rev Neurosci; 2022 Jun; 33(4):427-438. PubMed ID: 34757706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Set7/9 impacts COL2A1 expression through binding and repression of SirT1 histone deacetylation.
    Oppenheimer H; Kumar A; Meir H; Schwartz I; Zini A; Haze A; Kandel L; Mattan Y; Liebergall M; Dvir-Ginzberg M
    J Bone Miner Res; 2014 Feb; 29(2):348-60. PubMed ID: 23873758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway.
    Wang W; Lin Q; Lin R; Zhang J; Ren F; Zhang J; Ji M; Li Y
    Exp Cell Res; 2013 Jun; 319(10):1523-33. PubMed ID: 23603572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence.
    Yao H; Rahman I
    Biochem Pharmacol; 2012 Nov; 84(10):1332-9. PubMed ID: 22796566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression.
    Rahman I; Marwick J; Kirkham P
    Biochem Pharmacol; 2004 Sep; 68(6):1255-67. PubMed ID: 15313424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Putting the brake on inflammatory responses: the role of glucocorticoids.
    Hermoso MA; Cidlowski JA
    IUBMB Life; 2003 Sep; 55(9):497-504. PubMed ID: 14658755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research progress on SIRT1 and sepsis.
    Li L; Liu M; Cao M; He T; Bai X
    Histol Histopathol; 2019 Nov; 34(11):1205-1215. PubMed ID: 31282985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications.
    Kim ME; Kim DH; Lee JS
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of post-translational modifications of proteins on the inflammatory process.
    Ito K
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):281-3. PubMed ID: 17371260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SIRT1: role in cardiovascular biology.
    Ma L; Li Y
    Clin Chim Acta; 2015 Feb; 440():8-15. PubMed ID: 25444742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of the p65/RelA subunit of NF-kappaB in TNF-alpha-induced SIRT1 expression in vascular smooth muscle cells.
    Zhang HN; Li L; Gao P; Chen HZ; Zhang R; Wei YS; Liu DP; Liang CC
    Biochem Biophys Res Commun; 2010 Jul; 397(3):569-75. PubMed ID: 20617556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.