These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23098833)

  • 1. Infrared spectroscopy of proteins in reverse micelles.
    Yeung PS; Eskici G; Axelsen PH
    Biochim Biophys Acta; 2013 Oct; 1828(10):2314-8. PubMed ID: 23098833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
    Piletic IR; Tan HS; Fayer MD
    J Phys Chem B; 2005 Nov; 109(45):21273-84. PubMed ID: 16853758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do probe molecules influence water in confinement?
    Baruah B; Swafford LA; Crans DC; Levinger NE
    J Phys Chem B; 2008 Aug; 112(33):10158-64. PubMed ID: 18651765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein and water confined in nanometer-scale reverse micelles studied by near infrared, terahertz, and ultrafast visible spectroscopies.
    Murakami H
    Adv Protein Chem Struct Biol; 2013; 93():183-211. PubMed ID: 24018326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crowded environment of a reverse micelle induces the formation of β-strand seed structures for nucleating amyloid fibril formation.
    Yeung PS; Axelsen PH
    J Am Chem Soc; 2012 Apr; 134(14):6061-3. PubMed ID: 22448820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse micelle encapsulation as a model for intracellular crowding.
    Van Horn WD; Ogilvie ME; Flynn PF
    J Am Chem Soc; 2009 Jun; 131(23):8030-9. PubMed ID: 19469539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of water confined on a nanometer length scale in reverse micelles: ultrafast infrared vibrational echo spectroscopy.
    Tan HS; Piletic IR; Riter RE; Levinger NE; Fayer MD
    Phys Rev Lett; 2005 Feb; 94(5):057405. PubMed ID: 15783696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water Structure and Dynamics in the Stern Layer of Micelles: Femtosecond Mid-Infrared Pump-Probe Spectroscopy Study.
    Kundu A; Verma PK; Cho M
    J Phys Chem B; 2019 Jun; 123(25):5238-5245. PubMed ID: 31145621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.
    Martinez AV; Małolepsza E; Rivera E; Lu Q; Straub JE
    J Chem Phys; 2014 Dec; 141(22):22D530. PubMed ID: 25494801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational change of a synthetic amyloid analogue des[Ala21,30]A42 upon binding to octyl glucoside micelles.
    Laczkó-Hollósi I; Hollósi M; Lee VM; Mantsch HH
    Eur Biophys J; 1992; 21(5):345-8. PubMed ID: 1483409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water dynamics in large and small reverse micelles: from two ensembles to collective behavior.
    Moilanen DE; Fenn EE; Wong D; Fayer MD
    J Chem Phys; 2009 Jul; 131(1):014704. PubMed ID: 19586114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of structural parameters of protein-containing reverse micellar solution by near-infrared absorption spectroscopy.
    Murakami H; Nishi T; Toyota Y
    J Phys Chem B; 2011 May; 115(19):5877-85. PubMed ID: 21526781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-induced protein unfolding in the ternary system AOT-octane-water is different from that in bulk water.
    Meersman F; Dirix C; Shipovskov S; Klyachko NL; Heremans K
    Langmuir; 2005 Apr; 21(8):3599-604. PubMed ID: 15807607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast dynamics of water in cationic micelles.
    Dokter AM; Woutersen S; Bakker HJ
    J Chem Phys; 2007 Mar; 126(12):124507. PubMed ID: 17411144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes.
    Fenn EE; Wong DB; Giammanco CH; Fayer MD
    J Phys Chem B; 2011 Oct; 115(40):11658-70. PubMed ID: 21899355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles.
    Senske M; Xu Y; Bäumer A; Schäfer S; Wirtz H; Savolainen J; Weingärtner H; Havenith M
    Phys Chem Chem Phys; 2018 Mar; 20(13):8515-8522. PubMed ID: 29537025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of reverse micelles in membrane protein structural biology.
    Van Horn WD; Ogilvie ME; Flynn PF
    J Biomol NMR; 2008 Mar; 40(3):203-11. PubMed ID: 18297402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein folding in a reverse micelle environment: the role of confinement and dehydration.
    Martinez AV; DeSensi SC; Dominguez L; Rivera E; Straub JE
    J Chem Phys; 2011 Feb; 134(5):055107. PubMed ID: 21303167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal correlations in aqueous systems: computational studies of static and dynamic heterogeneity by 2D-IR spectroscopy.
    Ghosh R; Samanta T; Banaerjee S; Biswas R; Bagchi B
    Faraday Discuss; 2015; 177():313-28. PubMed ID: 25692942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement or the nature of the interface? Dynamics of nanoscopic water.
    Moilanen DE; Levinger NE; Spry DB; Fayer MD
    J Am Chem Soc; 2007 Nov; 129(46):14311-8. PubMed ID: 17958424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.