These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23098996)

  • 1. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances.
    Joshi N; Ngwenya BT; French CE
    J Hazard Mater; 2012 Nov; 241-242():363-70. PubMed ID: 23098996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface charge-dependent toxicity of silver nanoparticles.
    El Badawy AM; Silva RG; Morris B; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2011 Jan; 45(1):283-7. PubMed ID: 21133412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12.
    McQuillan JS; Infante HG; Stokes E; Shaw AM
    Nanotoxicology; 2012 Dec; 6():857-66. PubMed ID: 22007647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control.
    Gorka DE; Osterberg JS; Gwin CA; Colman BP; Meyer JN; Bernhardt ES; Gunsch CK; DiGulio RT; Liu J
    Environ Sci Technol; 2015 Aug; 49(16):10093-8. PubMed ID: 26146787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺.
    Hou W; Ma Z; Sun L; Han M; Lu J; Li Z; Mohamad OA; Wei G
    J Hazard Mater; 2013 Oct; 261():614-20. PubMed ID: 24041771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition.
    Reinsch BC; Levard C; Li Z; Ma R; Wise A; Gregory KB; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jul; 46(13):6992-7000. PubMed ID: 22296331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances.
    Li CC; Wang YJ; Dang F; Zhou DM
    J Hazard Mater; 2016 May; 308():21-8. PubMed ID: 26808239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the genetic basis for Escherichia coli defense against silver toxicity using mutant arrays.
    Xiu Z; Liu Y; Mathieu J; Wang J; Zhu D; Alvarez PJ
    Environ Toxicol Chem; 2014 May; 33(5):993-7. PubMed ID: 24408659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles.
    You J; Zhang Y; Hu Z
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):161-7. PubMed ID: 21398101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.
    Jiang W; Mashayekhi H; Xing B
    Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.
    Dror-Ehre A; Mamane H; Belenkova T; Markovich G; Adin A
    J Colloid Interface Sci; 2009 Nov; 339(2):521-6. PubMed ID: 19726047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances.
    Sheng GP; Yu HQ; Yue ZB
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):216-22. PubMed ID: 15843928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production.
    Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM
    Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial tolerance to silver nanoparticles (SNPs): aeromonas punctata isolated from sewage environment.
    Sudheer Khan S; Bharath Kumar E; Mukherjee A; Chandrasekaran N
    J Basic Microbiol; 2011 Apr; 51(2):183-90. PubMed ID: 21077112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance.
    Pletikapić G; Žutić V; Vinković Vrček I; Svetličić V
    J Mol Recognit; 2012 May; 25(5):309-17. PubMed ID: 22528193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.
    Becker A; Rüberg S; Baumgarth B; Bertram-Drogatz PA; Quester I; Pühler A
    J Mol Microbiol Biotechnol; 2002 May; 4(3):187-90. PubMed ID: 11931545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overproduction and increased molecular weight account for the symbiotic activity of the rkpZ-modified K polysaccharide from Sinorhizobium meliloti Rm1021.
    Sharypova LA; Chataigné G; Fraysse N; Becker A; Poinsot V
    Glycobiology; 2006 Dec; 16(12):1181-93. PubMed ID: 16957092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti.
    Slaveykova VI; Parthasarathy N; Dedieu K; Toescher D
    Environ Pollut; 2010 Aug; 158(8):2561-5. PubMed ID: 20541857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli.
    He X; Kuang Y; Li Y; Zhang H; Ma Y; Bai W; Zhang Z; Wu Z; Zhao Y; Chai Z
    Nanotoxicology; 2012 May; 6(3):233-40. PubMed ID: 21486189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of exopolysaccharides on the stability of silver nanoparticles in water.
    Khan SS; Mukherjee A; Chandrasekaran N
    Water Res; 2011 Oct; 45(16):5184-90. PubMed ID: 21831405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.