These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 23099121)
1. Application of the split-step Padé approach to nonlinear field predictions. Kamakura T; Nomura H; Clement GT Ultrasonics; 2013 Feb; 53(2):432-8. PubMed ID: 23099121 [TBL] [Abstract][Full Text] [Related]
2. A novel approach for description of nonlinear field radiated from a concave source with wide aperture angle. Sun M; Zhang D; Gong X Ultrasonics; 2006 Dec; 44 Suppl 1():e1435-8. PubMed ID: 16793098 [TBL] [Abstract][Full Text] [Related]
3. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation. Dagrau F; Rénier M; Marchiano R; Coulouvrat F J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874 [TBL] [Abstract][Full Text] [Related]
4. A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams. Soneson JE J Acoust Soc Am; 2012 Jun; 131(6):EL481-6. PubMed ID: 22713025 [TBL] [Abstract][Full Text] [Related]
5. Wave and extra-wide-angle parabolic equations for sound propagation in a moving atmosphere. Ostashev VE; Wilson DK; Muhlestein MB J Acoust Soc Am; 2020 Jun; 147(6):3969. PubMed ID: 32611146 [TBL] [Abstract][Full Text] [Related]
7. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens. Fan T; Liu Z; Chen T; Li F; Zhang D Med Phys; 2011 Sep; 38(9):5033-9. PubMed ID: 21978047 [TBL] [Abstract][Full Text] [Related]
8. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media. Jing Y; Cleveland RO J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398 [TBL] [Abstract][Full Text] [Related]
10. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling. Soneson JE IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):679-687. PubMed ID: 28103552 [TBL] [Abstract][Full Text] [Related]
12. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code. Qiao S; Jackson E; Coussios CC; Cleveland RO J Acoust Soc Am; 2016 Sep; 140(3):2039. PubMed ID: 27914432 [TBL] [Abstract][Full Text] [Related]
13. Influence of ribs on the nonlinear sound field of therapeutic ultrasound. Li JL; Liu XZ; Zhang D; Gong XF Ultrasound Med Biol; 2007 Sep; 33(9):1413-20. PubMed ID: 17630093 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers. Leissing T; Jean P; Defrance J; Soize C J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021 [TBL] [Abstract][Full Text] [Related]
15. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. Yang X; Cleveland RO J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear acoustic wave equations with fractional loss operators. Prieur F; Holm S J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055 [TBL] [Abstract][Full Text] [Related]
18. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density. Kanagawa T J Acoust Soc Am; 2015 May; 137(5):2642-54. PubMed ID: 25994696 [TBL] [Abstract][Full Text] [Related]
19. Second-harmonic generation of the nth-order Bessel beam. Ding D; Lu JY Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):2038-41. PubMed ID: 11046494 [TBL] [Abstract][Full Text] [Related]
20. Analytical method for describing the paraxial region of finite amplitude sound beams. Hamilton MF; Khokhlova VA; Rudenko OV J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]