These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23099318)

  • 21. Gene-gene and gene-environment interaction on the risk of Parkinson's disease.
    Singh NK; Banerjee BD; Bala K; Chhillar M; Chhillar N
    Curr Aging Sci; 2014; 7(2):101-9. PubMed ID: 25101650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease.
    Yamaguchi A; Ishikawa KI; Inoshita T; Shiba-Fukushima K; Saiki S; Hatano T; Mori A; Oji Y; Okuzumi A; Li Y; Funayama M; Imai Y; Hattori N; Akamatsu W
    Stem Cell Reports; 2020 Jun; 14(6):1060-1075. PubMed ID: 32470327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Huntington's disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent.
    Joshi P; Bodnya C; Ilieva I; Neely MD; Aschner M; Bowman AB
    Neurotoxicology; 2019 Dec; 75():148-157. PubMed ID: 31545971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease.
    Settivari R; Levora J; Nass R
    J Biol Chem; 2009 Dec; 284(51):35758-68. PubMed ID: 19801673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interplay between environmental and genetic factors in Parkinson's disease susceptibility: the evidence for pesticides.
    Dardiotis E; Xiromerisiou G; Hadjichristodoulou C; Tsatsakis AM; Wilks MF; Hadjigeorgiou GM
    Toxicology; 2013 May; 307():17-23. PubMed ID: 23295711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.
    Sriram K; Lin GX; Jefferson AM; Stone S; Afshari A; Keane MJ; McKinney W; Jackson M; Chen BT; Schwegler-Berry D; Cumpston A; Cumpston JL; Roberts JR; Frazer DG; Antonini JM
    Toxicology; 2015 Feb; 328():168-78. PubMed ID: 25549921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial biogenesis and neural differentiation of human iPSC is modulated by idebenone in a developmental stage-dependent manner.
    Augustyniak J; Lenart J; Zychowicz M; Stepien PP; Buzanska L
    Biogerontology; 2017 Aug; 18(4):665-677. PubMed ID: 28643190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rotenone exerts developmental neurotoxicity in a human brain spheroid model.
    Pamies D; Block K; Lau P; Gribaldo L; Pardo CA; Barreras P; Smirnova L; Wiersma D; Zhao L; Harris G; Hartung T; Hogberg HT
    Toxicol Appl Pharmacol; 2018 Sep; 354():101-114. PubMed ID: 29428530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis.
    Wan C; Ma X; Shi S; Zhao J; Nie X; Han J; Xiao J; Wang X; Jiang S; Jiang J
    Toxicol Appl Pharmacol; 2014 Dec; 281(3):294-302. PubMed ID: 25448048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models.
    Iannielli A; Bido S; Folladori L; Segnali A; Cancellieri C; Maresca A; Massimino L; Rubio A; Morabito G; Caporali L; Tagliavini F; Musumeci O; Gregato G; Bezard E; Carelli V; Tiranti V; Broccoli V
    Cell Rep; 2018 Feb; 22(8):2066-2079. PubMed ID: 29466734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable PARK2 Mutations Cause Early-Onset Parkinson's Disease in a Small Restricted Population.
    Ben-Shachar S; Afawi Z; Masalha R; Badarny S; Neiman T; Pavzner D; Bar-Shira A; Orr-Urtreger A
    J Mol Neurosci; 2017 Oct; 63(2):216-222. PubMed ID: 28913705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome Analysis of Induced Pluripotent Stem Cells and Neuronal Progenitor Cells, Derived from Discordant Monozygotic Twins with Parkinson's Disease.
    Vlasov IN; Alieva AK; Novosadova EV; Arsenyeva EL; Rosinskaya AV; Partevian SA; Grivennikov IA; Shadrina MI
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manganese-induced toxicity in normal and human B lymphocyte cell lines containing a homozygous mutation in parkin.
    Roth JA; Ganapathy B; Ghio AJ
    Toxicol In Vitro; 2012 Oct; 26(7):1143-9. PubMed ID: 22841634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C>T and EX6 del) in the PARK2 gene.
    Marote A; Pomeshchik Y; Goldwurm S; Collin A; Lamas NJ; Pinto L; Salgado AJ; Roybon L
    Stem Cell Res; 2018 Mar; 27():90-94. PubMed ID: 29353703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function.
    Hwang CJ; Kim YE; Son DJ; Park MH; Choi DY; Park PH; Hellström M; Han SB; Oh KW; Park EK; Hong JT
    Redox Biol; 2017 Apr; 11():456-468. PubMed ID: 28086194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and environmental findings in early-onset Parkinson's disease Brazilian patients.
    Aguiar Pde C; Lessa PS; Godeiro C; Barsottini O; Felício AC; Borges V; Silva SM; Saba RA; Ferraz HB; Moreira-Filho CA; Andrade LA
    Mov Disord; 2008 Jul; 23(9):1228-33. PubMed ID: 18464276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PARK2 variability in Polish Parkinson's disease patients--interaction with mitochondrial haplogroups.
    Gaweda-Walerych K; Safranow K; Jasinska-Myga B; Bialecka M; Klodowska-Duda G; Rudzinska M; Czyzewski K; Cobb SA; Slawek J; Styczynska M; Opala G; Drozdzik M; Nishioka K; Farrer MJ; Ross OA; Wszolek ZK; Barcikowska M; Zekanowski C
    Parkinsonism Relat Disord; 2012 Jun; 18(5):520-4. PubMed ID: 22361577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons.
    Suzuki S; Akamatsu W; Kisa F; Sone T; Ishikawa KI; Kuzumaki N; Katayama H; Miyawaki A; Hattori N; Okano H
    Biochem Biophys Res Commun; 2017 Jan; 483(1):88-93. PubMed ID: 28057485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of histone acetylation in activation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway by manganese chloride.
    Zhang Z; Guo Z; Zhan Y; Li H; Wu S
    Toxicol Appl Pharmacol; 2017 Dec; 336():94-100. PubMed ID: 29054681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.