These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23099345)

  • 41. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats.
    Luo TZ; Bondy AG; Gupta D; Elliott VA; Kopec CD; Brody CD
    Elife; 2020 Oct; 9():. PubMed ID: 33089778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A wireless recording system that utilizes Bluetooth technology to transmit neural activity in freely moving animals.
    Hampson RE; Collins V; Deadwyler SA
    J Neurosci Methods; 2009 Sep; 182(2):195-204. PubMed ID: 19524612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. OSERR: an open-source standalone electrophysiology recording system for rodents.
    Cheng N; Murari K
    Sci Rep; 2020 Oct; 10(1):16996. PubMed ID: 33046761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.
    Gagnon-Turcotte G; LeChasseur Y; Bories C; Messaddeq Y; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):1-14. PubMed ID: 27337721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A low-cost, open-source, wireless electrophysiology system.
    Ghomashchi A; Zheng Z; Majaj N; Trumpis M; Kiorpes L; Viventi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3138-41. PubMed ID: 25570656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term decoding of movement force and direction with a wireless myoelectric implant.
    Morel P; Ferrea E; Taghizadeh-Sarshouri B; Audí JM; Ruff R; Hoffmann KP; Lewis S; Russold M; Dietl H; Abu-Saleh L; Schroeder D; Krautschneider W; Meiners T; Gail A
    J Neural Eng; 2016 Feb; 13(1):016002. PubMed ID: 26643959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High order neural correlates of social behavior in the honeybee brain.
    Duer A; Paffhausen BH; Menzel R
    J Neurosci Methods; 2015 Oct; 254():1-9. PubMed ID: 26192327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording.
    Perentos N; Nicol AU; Martins AQ; Stewart JE; Taylor P; Morton AJ
    J Neurosci Methods; 2017 Mar; 279():87-100. PubMed ID: 27914975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous Recordings of Central and Peripheral Bioelectrical Signals in a Freely Moving Rodent.
    Sasaki T; Nishimura Y; Ikegaya Y
    Biol Pharm Bull; 2017; 40(5):711-715. PubMed ID: 28458358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions.
    Rebec GV; Langley PE; Pierce RC; Wang Z; Heidenreich BA
    J Neurosci Methods; 1993 Apr; 47(1-2):53-9. PubMed ID: 8321014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavioral and electrophysiological effects of crustacean neurohormone on freely moving cats.
    Martínez-Gómez M; Pacheco P; Aréchiga H
    Physiol Behav; 1989 Dec; 46(6):983-92. PubMed ID: 2634264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electromyogram recordings from freely moving animals.
    Whelan PJ
    Methods; 2003 Jun; 30(2):127-41. PubMed ID: 12725779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls.
    Nieder A
    J Neurosci Methods; 2000 Sep; 101(2):157-64. PubMed ID: 10996376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats.
    Deadwyler SA; Biela J; Rose G; West M; Lynch G
    Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat.
    Westby GW; Wang H
    J Neurosci Methods; 1997 Oct; 76(2):123-33. PubMed ID: 9350963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-cell recording from the brain of freely moving monkeys.
    Ludvig N; Botero JM; Tang HM; Gohil B; Kral JG
    J Neurosci Methods; 2001 Apr; 106(2):179-87. PubMed ID: 11325438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.