BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 23099485)

  • 1. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions.
    Beers J; Gulbranson DR; George N; Siniscalchi LI; Jones J; Thomson JA; Chen G
    Nat Protoc; 2012 Nov; 7(11):2029-40. PubMed ID: 23099485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging.
    Stover AE; Schwartz PH
    Methods Mol Biol; 2011; 767():137-46. PubMed ID: 21822872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of human pluripotent stem cells in defined medium.
    Liu W; Chen G
    Curr Protoc Stem Cell Biol; 2014 Nov; 31():1C.17.1-13. PubMed ID: 25366897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and scalable culture of single dissociated human pluripotent stem cells using recombinant E8 fragments of human laminin isoforms.
    Miyazaki T; Kawase E
    Curr Protoc Stem Cell Biol; 2015 Feb; 32():1C.18.1-1C.18.8. PubMed ID: 25640816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture, Adaptation, and Expansion of Pluripotent Stem Cells.
    Brehm JL; Ludwig TE
    Methods Mol Biol; 2017; 1590():139-150. PubMed ID: 28353267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure.
    Yang Y; Adachi K; Sheridan MA; Alexenko AP; Schust DJ; Schulz LC; Ezashi T; Roberts RM
    Proc Natl Acad Sci U S A; 2015 May; 112(18):E2337-46. PubMed ID: 25870291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clump-passaging-based efficient 3D culture of human pluripotent stem cells under chemically defined conditions.
    Lee MO; Jeon H; Son MY; Lee SC; Cho YS
    Biochem Biophys Res Commun; 2017 Nov; 493(1):723-730. PubMed ID: 28859981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate.
    Kawase E
    Methods Mol Biol; 2016; 1307():61-9. PubMed ID: 24875248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating a Cost-Effective, Weekend-Free Chemically Defined Human Induced Pluripotent Stem Cell (hiPSC) Culture Medium.
    Fonoudi H; Lyra-Leite DM; Javed HA; Burridge PW
    Curr Protoc Stem Cell Biol; 2020 Jun; 53(1):e110. PubMed ID: 32463953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells.
    Burridge PW; Holmström A; Wu JC
    Curr Protoc Hum Genet; 2015 Oct; 87():21.3.1-21.3.15. PubMed ID: 26439715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining optimal enzyme and matrix combination for replating of human induced pluripotent stem cell-derived cardiomyocytes at different levels of maturity.
    Koc A; Sahoglu Goktas S; Akgul Caglar T; Cagavi E
    Exp Cell Res; 2021 Jun; 403(2):112599. PubMed ID: 33848551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells.
    Mollamohammadi S; Taei A; Pakzad M; Totonchi M; Seifinejad A; Masoudi N; Baharvand H
    Hum Reprod; 2009 Oct; 24(10):2468-76. PubMed ID: 19602515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells.
    Nagaoka M; Kobayashi M; Kawai C; Mallanna SK; Duncan SA
    PLoS One; 2015; 10(8):e0136350. PubMed ID: 26308339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Automated Single Cell Isolation and Sub-Cloning of Human Pluripotent Stem Cells.
    Vallone VF; Telugu NS; Fischer I; Miller D; Schommer S; Diecke S; Stachelscheid H
    Curr Protoc Stem Cell Biol; 2020 Dec; 55(1):e123. PubMed ID: 32956572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xeno-Free Reprogramming of Peripheral Blood Mononuclear Erythroblasts on Laminin-521.
    Skorik C; Mullin NK; Shi M; Zhang Y; Hunter P; Tang Y; Hilton B; Schlaeger TM
    Curr Protoc Stem Cell Biol; 2020 Mar; 52(1):e103. PubMed ID: 31977148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Routine culture and differentiation of human embryonic stem cells.
    McWhir J; Wojtacha D; Thomson A
    Methods Mol Biol; 2006; 331():77-90. PubMed ID: 16881510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells.
    Baharvand H; Salekdeh GH; Taei A; Mollamohammadi S
    Nat Protoc; 2010 Mar; 5(3):588-94. PubMed ID: 20203673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.
    Lu HF; Narayanan K; Lim SX; Gao S; Leong MF; Wan AC
    Biomaterials; 2012 Mar; 33(8):2419-30. PubMed ID: 22196900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells.
    Kunova M; Matulka K; Eiselleova L; Trckova P; Hampl A; Dvorak P
    Reprod Biomed Online; 2010 Nov; 21(5):676-86. PubMed ID: 20884295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method.
    Zhang J; Klos M; Wilson GF; Herman AM; Lian X; Raval KK; Barron MR; Hou L; Soerens AG; Yu J; Palecek SP; Lyons GE; Thomson JA; Herron TJ; Jalife J; Kamp TJ
    Circ Res; 2012 Oct; 111(9):1125-36. PubMed ID: 22912385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.