BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 23099485)

  • 21. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings.
    Villa-Diaz LG; Ross AM; Lahann J; Krebsbach PH
    Stem Cells; 2013 Jan; 31(1):1-7. PubMed ID: 23081828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
    Ausubel LJ; Lopez PM; Couture LA
    Methods Mol Biol; 2011; 767():147-59. PubMed ID: 21822873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feeder-independent culture systems for human pluripotent stem cells.
    Moody J
    Methods Mol Biol; 2013; 946():507-21. PubMed ID: 23179852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved generation of patient-specific induced pluripotent stem cells using a chemically-defined and matrigel-based approach.
    Groß B; Sgodda M; Rasche M; Schambach A; Göhring G; Schlegelberger B; Greber B; Linden T; Reinhardt D; Cantz T; Klusmann JH
    Curr Mol Med; 2013 Jun; 13(5):765-76. PubMed ID: 23642058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions.
    Choo A; Ngo AS; Ding V; Oh S; Kiang LS
    Methods Cell Biol; 2008; 86():15-28. PubMed ID: 18442642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation.
    Sart S; Ma T; Li Y
    Biotechnol Prog; 2013; 29(1):143-53. PubMed ID: 23125166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.
    van den Berg CW; Elliott DA; Braam SR; Mummery CL; Davis RP
    Methods Mol Biol; 2016; 1353():163-80. PubMed ID: 25626427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.
    Slamecka J; Salimova L; McClellan S; van Kelle M; Kehl D; Laurini J; Cinelli P; Owen L; Hoerstrup SP; Weber B
    Cell Cycle; 2016; 15(2):234-49. PubMed ID: 26654216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Differentiation of Postganglionic Sympathetic Neurons using Human Pluripotent Stem Cells under Feeder-free and Chemically Defined Culture Conditions.
    Wu HF; Zeltner N
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions.
    Hayashi Y; Chan T; Warashina M; Fukuda M; Ariizumi T; Okabayashi K; Takayama N; Otsu M; Eto K; Furue MK; Michiue T; Ohnuma K; Nakauchi H; Asashima M
    PLoS One; 2010 Nov; 5(11):e14099. PubMed ID: 21124894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xeno-free culture of human pluripotent stem cells.
    Bergström R; Ström S; Holm F; Feki A; Hovatta O
    Methods Mol Biol; 2011; 767():125-36. PubMed ID: 21822871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells.
    Yasuda SY; Ikeda T; Shahsavarani H; Yoshida N; Nayer B; Hino M; Vartak-Sharma N; Suemori H; Hasegawa K
    Nat Biomed Eng; 2018 Mar; 2(3):173-182. PubMed ID: 31015717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human-Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions.
    Rivera T; Zhao Y; Ni Y; Wang J
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e117. PubMed ID: 32649060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture.
    Beers J; Linask KL; Chen JA; Siniscalchi LI; Lin Y; Zheng W; Rao M; Chen G
    Sci Rep; 2015 Jun; 5():11319. PubMed ID: 26066579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and efficient generation of neurons from human pluripotent stem cells in a multititre plate format.
    Zhang M; Schöler HR; Greber B
    J Vis Exp; 2013 Mar; (73):e4335. PubMed ID: 23486189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of Cardiomyocytes from Pluripotent Stem Cells.
    Nakahama H; Di Pasquale E
    Methods Mol Biol; 2016; 1353():181-90. PubMed ID: 25523811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells.
    Zhu WZ; Van Biber B; Laflamme MA
    Methods Mol Biol; 2011; 767():419-31. PubMed ID: 21822893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells.
    Zhang R; Mjoseng HK; Hoeve MA; Bauer NG; Pells S; Besseling R; Velugotla S; Tourniaire G; Kishen RE; Tsenkina Y; Armit C; Duffy CR; Helfen M; Edenhofer F; de Sousa PA; Bradley M
    Nat Commun; 2013; 4():1335. PubMed ID: 23299885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos.
    Farzaneh M; Zare M; Hassani SN; Baharvand H
    J Cell Biochem; 2018 Aug; 119(8):6325-6336. PubMed ID: 29393549
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.