These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23099550)

  • 1. Additional load decreases movement time in the wrist but not in arm movements at ID 6.
    Panzer S; Boyle JB; Shea CH
    Exp Brain Res; 2013 Jan; 224(2):243-53. PubMed ID: 23099550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-movements of varying difficulties: wrist and arm movements.
    Boyle JB; Shea CH
    Exp Brain Res; 2013 Aug; 229(1):61-73. PubMed ID: 23732949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended practice of reciprocal wrist and arm movements of varying difficulties.
    Boyle J; Panzer S; Wright D; Shea CH
    Acta Psychol (Amst); 2012 Jun; 140(2):142-53. PubMed ID: 22627158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the control of high ID movements: rethinking the obvious.
    Boyle J; Kennedy D; Shea CH
    Exp Brain Res; 2012 Nov; 223(3):377-87. PubMed ID: 23001371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the control of high-ID movements: rethinking the power of the visual display.
    Boyle JB; Panzer S; Wang C; Kennedy D; Shea CH
    Exp Brain Res; 2013 Dec; 231(4):479-93. PubMed ID: 24091772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.
    Hatzitaki V; McKinley P
    Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task.
    Shapiro MB; Niu CM; Poon C; David FJ; Corcos DM
    Exp Brain Res; 2009 Jun; 195(4):575-91. PubMed ID: 19434401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-joint limbs permit a flexible response to unpredictable events.
    Robertson EM; Miall RC
    Exp Brain Res; 1997 Oct; 117(1):148-52. PubMed ID: 9386013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlimb differences in coordination of rapid wrist/forearm movements.
    Srinivasan GA; Embar T; Sainburg R
    Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrist and arm movements of varying difficulties.
    Boyle JB; Shea CH
    Acta Psychol (Amst); 2011 Jul; 137(3):382-96. PubMed ID: 21600531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the dynamic transformation of a sliding lever on aiming errors.
    Heuer H; Sülzenbrück S
    Neuroscience; 2012 Apr; 207():137-47. PubMed ID: 22309808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load emphasizes muscle effort minimization during selection of arm movement direction.
    Wang W; Dounskaia N
    J Neuroeng Rehabil; 2012 Oct; 9():70. PubMed ID: 23035925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pointing in 3D space to remembered targets. II. Effects of movement speed toward kinesthetically defined targets.
    Adamovich SV; Berkinblit MB; Fookson O; Poizner H
    Exp Brain Res; 1999 Mar; 125(2):200-10. PubMed ID: 10204772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of arm trajectory during continuous drawing movements in different dynamic environments.
    Fukushi T; Ashe J
    Exp Brain Res; 2003 Jan; 148(1):95-104. PubMed ID: 12478400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG responses to unexpected perturbations are delayed in slower movements.
    David FJ; Poon C; Niu CM; Corcos DM; Shapiro MB
    Exp Brain Res; 2009 Oct; 199(1):27-38. PubMed ID: 19701630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of movement segment difficulty on movements with two-stroke sequence.
    Rand MK; Alberts JL; Stelmach GE; Bloedel JR
    Exp Brain Res; 1997 Jun; 115(1):137-46. PubMed ID: 9224841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.