BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2062 related articles for article (PubMed ID: 23100256)

  • 1. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza).
    Zhang FQ; Wang YS; Lou ZP; Dong JD
    Chemosphere; 2007 Feb; 67(1):44-50. PubMed ID: 17123580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress.
    Lu Y; Li N; Sun J; Hou P; Jing X; Zhu H; Deng S; Han Y; Huang X; Ma X; Zhao N; Zhang Y; Shen X; Chen S
    Tree Physiol; 2013 Jan; 33(1):81-95. PubMed ID: 23264032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings.
    Chen F; Zhang S; Jiang H; Ma W; Korpelainen H; Li C
    J Proteome Res; 2011 Sep; 10(9):3944-58. PubMed ID: 21761936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.
    Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X
    J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize.
    Zhao KF; Song J; Fan H; Zhou S; Zhao M
    J Integr Plant Biol; 2010 May; 52(5):468-75. PubMed ID: 20537042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco.
    Ganesan G; Sankararamasubramanian HM; Harikrishnan M; Ganpudi A; Parida A
    J Exp Bot; 2012 Jul; 63(12):4549-61. PubMed ID: 22904269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome analysis of tobacco leaves under salt stress.
    Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S
    Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress.
    Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W
    PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis.
    Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J
    Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.).
    Talbi Zribi O; Abdelly C; Debez A
    Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza.
    Basyuni M; Baba S; Kinjo Y; Putri LA; Hakim L; Oku H
    J Plant Physiol; 2012 Dec; 169(18):1903-8. PubMed ID: 22921677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentially delayed root proteome responses to salt stress in sugar cane varieties.
    Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T
    J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity.
    Wang X; Fan P; Song H; Chen X; Li X; Li Y
    J Proteome Res; 2009 Jul; 8(7):3331-45. PubMed ID: 19445527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 104.