These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1132 related articles for article (PubMed ID: 23100256)
1. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
2. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Tada Y; Kashimura T Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX; Fan HF; Guo SR; Tezuka T; Li J Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043 [TBL] [Abstract][Full Text] [Related]
5. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Zhang FQ; Wang YS; Lou ZP; Dong JD Chemosphere; 2007 Feb; 67(1):44-50. PubMed ID: 17123580 [TBL] [Abstract][Full Text] [Related]
6. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Lu Y; Li N; Sun J; Hou P; Jing X; Zhu H; Deng S; Han Y; Huang X; Ma X; Zhao N; Zhang Y; Shen X; Chen S Tree Physiol; 2013 Jan; 33(1):81-95. PubMed ID: 23264032 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings. Chen F; Zhang S; Jiang H; Ma W; Korpelainen H; Li C J Proteome Res; 2011 Sep; 10(9):3944-58. PubMed ID: 21761936 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188 [TBL] [Abstract][Full Text] [Related]
10. Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize. Zhao KF; Song J; Fan H; Zhou S; Zhao M J Integr Plant Biol; 2010 May; 52(5):468-75. PubMed ID: 20537042 [TBL] [Abstract][Full Text] [Related]
11. Comparative proteomic analysis of canola leaves under salinity stress. Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525 [TBL] [Abstract][Full Text] [Related]
12. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. Ganesan G; Sankararamasubramanian HM; Harikrishnan M; Ganpudi A; Parida A J Exp Bot; 2012 Jul; 63(12):4549-61. PubMed ID: 22904269 [TBL] [Abstract][Full Text] [Related]
13. Proteome analysis of tobacco leaves under salt stress. Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571 [TBL] [Abstract][Full Text] [Related]
14. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157 [TBL] [Abstract][Full Text] [Related]
16. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis. Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996 [TBL] [Abstract][Full Text] [Related]
17. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Talbi Zribi O; Abdelly C; Debez A Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779 [TBL] [Abstract][Full Text] [Related]
18. Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza. Basyuni M; Baba S; Kinjo Y; Putri LA; Hakim L; Oku H J Plant Physiol; 2012 Dec; 169(18):1903-8. PubMed ID: 22921677 [TBL] [Abstract][Full Text] [Related]
19. Differentially delayed root proteome responses to salt stress in sugar cane varieties. Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Wang X; Fan P; Song H; Chen X; Li X; Li Y J Proteome Res; 2009 Jul; 8(7):3331-45. PubMed ID: 19445527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]