BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 23100489)

  • 1. Body dynamics and hydrodynamics of swimming fish larvae: a computational study.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing the strike of a predator fish depends on the specific gravity of a prey fish.
    Stewart WJ; McHenry MJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3769-77. PubMed ID: 21037055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are fish less responsive to a flow stimulus when swimming?
    Feitl KE; Ngo V; McHenry MJ
    J Exp Biol; 2010 Sep; 213(Pt 18):3131-7. PubMed ID: 20802114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data.
    Borazjani I; Sotiropoulos F; Tytell ED; Lauder GV
    J Exp Biol; 2012 Feb; 215(Pt 4):671-84. PubMed ID: 22279075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement and function of the pectoral fins of the larval zebrafish (Danio rerio) during slow swimming.
    Green MH; Ho RK; Hale ME
    J Exp Biol; 2011 Sep; 214(Pt 18):3111-23. PubMed ID: 21865524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated visual tracking for studying the ontogeny of zebrafish swimming.
    Fontaine E; Lentink D; Kranenbarg S; Müller UK; van Leeuwen JL; Barr AH; Burdick JW
    J Exp Biol; 2008 Apr; 211(Pt 8):1305-16. PubMed ID: 18375855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prey fish escape by sensing the bow wave of a predator.
    Stewart WJ; Nair A; Jiang H; McHenry MJ
    J Exp Biol; 2014 Dec; 217(Pt 24):4328-36. PubMed ID: 25520384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrodynamics of ribbon-fin propulsion during impulsive motion.
    Shirgaonkar AA; Curet OM; Patankar NA; Maciver MA
    J Exp Biol; 2008 Nov; 211(Pt 21):3490-503. PubMed ID: 18931321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin.
    Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M
    J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrodynamics of eel swimming II. Effect of swimming speed.
    Tytell ED
    J Exp Biol; 2004 Sep; 207(Pt 19):3265-79. PubMed ID: 15326203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis).
    Standen EM; Lauder GV
    J Exp Biol; 2007 Jan; 210(Pt 2):325-39. PubMed ID: 17210968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escape trajectories are deflected when fish larvae intercept their own C-start wake.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J R Soc Interface; 2014 Dec; 11(101):20140848. PubMed ID: 25401174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.
    Cohen RC; Cleary PW; Mason BR
    Hum Mov Sci; 2012 Jun; 31(3):604-19. PubMed ID: 21840077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model.
    Reid DA; Hildenbrandt H; Padding JT; Hemelrijk CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021901. PubMed ID: 22463238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenging zebrafish escape responses by increasing water viscosity.
    Danos N; Lauder GV
    J Exp Biol; 2012 Jun; 215(Pt 11):1854-62. PubMed ID: 22573764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.
    Richards CT
    J Exp Biol; 2008 Oct; 211(Pt 19):3181-94. PubMed ID: 18805818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio).
    Van Trump WJ; McHenry MJ
    J Exp Biol; 2008 Jul; 211(Pt 13):2105-15. PubMed ID: 18552300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.