These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23100585)
21. Feasibility of diode-array instruments to carry near-infrared spectroscopy from laboratory to feed process control. Fernández-Ahumada E; Garrido-Varo A; Guerrero-Ginel JE J Agric Food Chem; 2008 May; 56(9):3185-92. PubMed ID: 18407654 [TBL] [Abstract][Full Text] [Related]
22. Prediction of Mineral Composition in Commercial Extruded Dry Dog Food by Near-Infrared Reflectance Spectroscopy. Goi A; Manuelian CL; Currò S; Marchi M Animals (Basel); 2019 Sep; 9(9):. PubMed ID: 31480585 [TBL] [Abstract][Full Text] [Related]
23. Quantification of fatty acids in forages by near-infrared reflectance spectroscopy. Foster JG; Clapham WM; Fedders JM J Agric Food Chem; 2006 May; 54(9):3186-92. PubMed ID: 16637670 [TBL] [Abstract][Full Text] [Related]
24. Prediction of immunoglobulin G content in bovine colostrum by near-infrared spectroscopy. Rivero MJ; Valderrama X; Haines D; Alomar D J Dairy Sci; 2012 Mar; 95(3):1410-8. PubMed ID: 22365223 [TBL] [Abstract][Full Text] [Related]
25. Determining metabolizable energy content in commercial pet foods. Laflamme DP J Anim Physiol Anim Nutr (Berl); 2001 Aug; 85(7-8):222-30. PubMed ID: 11686793 [TBL] [Abstract][Full Text] [Related]
26. Near-infrared reflectance spectroscopy predictions as indicator traits in breeding programs for enhanced beef quality. Cecchinato A; De Marchi M; Penasa M; Albera A; Bittante G J Anim Sci; 2011 Sep; 89(9):2687-95. PubMed ID: 21454870 [TBL] [Abstract][Full Text] [Related]
27. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
28. Using gross energy improves metabolizable energy predictive equations for pet foods whereas undigested protein and fiber content predict stool quality. Hall JA; Melendez LD; Jewell DE PLoS One; 2013; 8(1):e54405. PubMed ID: 23342151 [TBL] [Abstract][Full Text] [Related]
29. Technical note: comparison of Raman, mid, and near infrared spectroscopy for predicting the amino acid content in animal meals. Qiao Y; van Kempen TA J Anim Sci; 2004 Sep; 82(9):2596-600. PubMed ID: 15446475 [TBL] [Abstract][Full Text] [Related]
30. Field testing of a system for online classification of beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Shackelford SD; Wheeler TL; King DA; Koohmaraie M J Anim Sci; 2012 Mar; 90(3):978-88. PubMed ID: 22064739 [TBL] [Abstract][Full Text] [Related]
31. Authentication of organic feed by near-infrared spectroscopy combined with chemometrics: a feasibility study. Tres A; van der Veer G; Perez-Marin MD; van Ruth SM; Garrido-Varo A J Agric Food Chem; 2012 Aug; 60(33):8129-33. PubMed ID: 22844991 [TBL] [Abstract][Full Text] [Related]
32. Feeding patterns and dietary intake in a random sample of a Swedish population of insured-dogs. Sallander M; Hedhammar A; Rundgren M; Lindberg JE Prev Vet Med; 2010 Jul; 95(3-4):281-7. PubMed ID: 20570000 [TBL] [Abstract][Full Text] [Related]
33. The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts. De Marchi M; Penasa M; Cecchinato A; Bittante G Meat Sci; 2013 Feb; 93(2):329-35. PubMed ID: 23098602 [TBL] [Abstract][Full Text] [Related]
34. Implementation of LOCAL algorithm with near-infrared spectroscopy for compliance assurance in compound feedingstuffs. Pérez-Marín D; Garrido-Varo A; Guerrero JE Appl Spectrosc; 2005 Jan; 59(1):69-77. PubMed ID: 15720740 [TBL] [Abstract][Full Text] [Related]
35. Potential use of near infrared reflectance spectroscopy (NIRS) for the estimation of chemical composition of oxen meat samples. Prieto N; Andrés S; Giráldez FJ; Mantecón AR; Lavín P Meat Sci; 2006 Nov; 74(3):487-96. PubMed ID: 22063053 [TBL] [Abstract][Full Text] [Related]
36. [Rapid determination of fatty acids in soybeans [Glycine max (L.) Merr.] by FT-near-infrared reflectance spectroscopy]. Sun JM; Han FX; Yan SR; Yang H; Tetsuo S Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1290-5. PubMed ID: 18800707 [TBL] [Abstract][Full Text] [Related]
37. Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy. Kim KS; Park SH; Choung MG J Agric Food Chem; 2007 Mar; 55(5):1679-85. PubMed ID: 17288449 [TBL] [Abstract][Full Text] [Related]
38. Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins. De la Haba MJ; Garrido-Varo A; Guerrero-Ginel JE; Pérez-Marín DC J Agric Food Chem; 2006 Oct; 54(20):7703-9. PubMed ID: 17002442 [TBL] [Abstract][Full Text] [Related]
39. [Prediction of IVDMD with near infrared reflectance spectroscopy (NIRS) in maize stalk]. Bai QL; Chen SJ; Dong XL; Meng QX; Yan YL; Dai JR Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):271-4. PubMed ID: 16826904 [TBL] [Abstract][Full Text] [Related]
40. Prediction of in vivo apparent total tract energy digestibility of barley in grower pigs using an in vitro digestibility technique. Regmi PR; Sauer WC; Zijlstra RT J Anim Sci; 2008 Oct; 86(10):2619-26. PubMed ID: 18567720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]