These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23102320)

  • 1. Coupling between whistler waves and ion-scale solitary waves: cluster measurements in the magnetotail during a substorm.
    Tenerani A; Le Contel O; Califano F; Pegoraro F; Robert P; Cornilleau-Wehrlin N; Sauvaud JA
    Phys Rev Lett; 2012 Oct; 109(15):155005. PubMed ID: 23102320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whistler modes with wave magnetic fields exceeding the ambient field.
    Stenzel RL; Urrutia JM; Strohmaier KD
    Phys Rev Lett; 2006 Mar; 96(9):095004. PubMed ID: 16606272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse duration constraint of whistler waves in magnetized dense plasma.
    Hata M; Sano T; Sentoku Y; Nagatomo H; Sakagami H
    Phys Rev E; 2021 Sep; 104(3-2):035205. PubMed ID: 34654167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whistler mode based explanation for the fast reconnection rate measured in the mit versatile toroidal facility.
    Singh N
    Phys Rev Lett; 2011 Dec; 107(24):245003. PubMed ID: 22243006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast wave-particle energy transfer in the collapse of standing whistler waves.
    Sano T; Hata M; Kawahito D; Mima K; Sentoku Y
    Phys Rev E; 2019 Nov; 100(5-1):053205. PubMed ID: 31869898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Generation of Whistler Waves in the Turbulent Magnetosheath.
    Svenningsson I; Yordanova E; Cozzani G; Khotyaintsev YV; André M
    Geophys Res Lett; 2022 Aug; 49(15):e2022GL099065. PubMed ID: 36247519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterstreaming beams and flat-top electron distributions observed with Langmuir, Whistler, and compressional Alfvén waves in earth's magnetic tail.
    Teste A; Parks GK
    Phys Rev Lett; 2009 Feb; 102(7):075003. PubMed ID: 19257680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation of localized rotating waves in plasma density cavities by scattering of fast magnetosonic waves.
    Hall JO; Eriksson AI; Leyser TB
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):255002. PubMed ID: 15245017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma jet braking: energy dissipation and nonadiabatic electrons.
    Khotyaintsev YV; Cully CM; Vaivads A; André M; Owen CJ
    Phys Rev Lett; 2011 Apr; 106(16):165001. PubMed ID: 21599373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow magnetosonic solitons detected by the cluster spacecraft.
    Stasiewicz K; Shukla PK; Gustafsson G; Buchert S; Lavraud B; Thidé B; Klos Z
    Phys Rev Lett; 2003 Feb; 90(8):085002. PubMed ID: 12633433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermonuclear fusion triggered by collapsing standing whistler waves in magnetized overdense plasmas.
    Sano T; Fujioka S; Mori Y; Mima K; Sentoku Y
    Phys Rev E; 2020 Jan; 101(1-1):013206. PubMed ID: 32069605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic Steepening of Whistler Waves.
    Vasko IY; Agapitov OV; Mozer FS; Bonnell JW; Artemyev AV; Krasnoselskikh VV; Tong Y
    Phys Rev Lett; 2018 May; 120(19):195101. PubMed ID: 29799234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of Chirping Whistler Waves in a Laboratory Plasma.
    Van Compernolle B; An X; Bortnik J; Thorne RM; Pribyl P; Gekelman W
    Phys Rev Lett; 2015 Jun; 114(24):245002. PubMed ID: 26196981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas.
    Banerjee S; Misra AP; Shukla PK; Rondoni L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046405. PubMed ID: 20481845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of random-phase lattice solitons.
    Cohen O; Bartal G; Buljan H; Carmon T; Fleischer JW; Segev M; Christodoulides DN
    Nature; 2005 Feb; 433(7025):500-3. PubMed ID: 15690035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of parallel electron velocity distributions using whistler wave absorption.
    Thuecks DJ; Skiff F; Kletzing CA
    Rev Sci Instrum; 2012 Aug; 83(8):083503. PubMed ID: 22938290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations of slow electron holes at a magnetic reconnection site.
    Khotyaintsev YV; Vaivads A; André M; Fujimoto M; Retinò A; Owen CJ
    Phys Rev Lett; 2010 Oct; 105(16):165002. PubMed ID: 21230981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
    Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C
    Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency whistler waves excited by relativistic laser pulses.
    Song HH; Wang WM; Wang JQ; Li YT; Zhang J
    Phys Rev E; 2020 Nov; 102(5-1):053204. PubMed ID: 33327142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.
    Tejero EM; Crabtree C; Blackwell DD; Amatucci WE; Mithaiwala M; Ganguli G; Rudakov L
    Sci Rep; 2015 Dec; 5():17852. PubMed ID: 26647962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.