These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 23102329)
1. Reduced step edges on rutile TiO2(110) as competing defects to oxygen vacancies on the terraces and reactive sites for ethanol dissociation. Martinez U; Hansen JØ; Lira E; Kristoffersen HH; Huo P; Bechstein R; Lægsgaard E; Besenbacher F; Hammer B; Wendt S Phys Rev Lett; 2012 Oct; 109(15):155501. PubMed ID: 23102329 [TBL] [Abstract][Full Text] [Related]
2. Role of steps in the dissociative adsorption of water on rutile TiO2(110). Kristoffersen HH; Hansen JO; Martinez U; Wei YY; Matthiesen J; Streber R; Bechstein R; Lægsgaard E; Besenbacher F; Hammer B; Wendt S Phys Rev Lett; 2013 Apr; 110(14):146101. PubMed ID: 25167009 [TBL] [Abstract][Full Text] [Related]
3. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
4. Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO₂ (110). Rieboldt F; Vilhelmsen LB; Koust S; Lauritsen JV; Helveg S; Lammich L; Besenbacher F; Hammer B; Wendt S J Chem Phys; 2014 Dec; 141(21):214702. PubMed ID: 25481156 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence for ethanol dissociation on rutile TiO2(110). Hansen JO; Huo P; Martinez U; Lira E; Wei YY; Streber R; Laegsgaard E; Hammer B; Wendt S; Besenbacher F Phys Rev Lett; 2011 Sep; 107(13):136102. PubMed ID: 22026875 [TBL] [Abstract][Full Text] [Related]
6. Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Schaub R; Thostrup P; Lopez N; Laegsgaard E; Stensgaard I; Nørskov JK; Besenbacher F Phys Rev Lett; 2001 Dec; 87(26):266104. PubMed ID: 11800845 [TBL] [Abstract][Full Text] [Related]
7. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Matthey D; Wang JG; Wendt S; Matthiesen J; Schaub R; Laegsgaard E; Hammer B; Besenbacher F Science; 2007 Mar; 315(5819):1692-6. PubMed ID: 17379802 [TBL] [Abstract][Full Text] [Related]
8. Charge trapping at the step edges of TiO(2) anatase (101). Setvin M; Hao X; Daniel B; Pavelec J; Novotny Z; Parkinson GS; Schmid M; Kresse G; Franchini C; Diebold U Angew Chem Int Ed Engl; 2014 Apr; 53(18):4714-6. PubMed ID: 24677419 [TBL] [Abstract][Full Text] [Related]
9. A DFT Study of the Reactivity of Anatase TiO2 and Tetragonal ZrO2 Stepped Surfaces Compared to the Regular (101) Terraces. Tosoni S; Chen HY; Pacchioni G Chemphyschem; 2015 Dec; 16(17):3642-51. PubMed ID: 26395103 [TBL] [Abstract][Full Text] [Related]
10. Molecular oxygen adsorption behaviors on the rutile TiO2(110)-1×1 surface: an in situ study with low-temperature scanning tunneling microscopy. Tan S; Ji Y; Zhao Y; Zhao A; Wang B; Yang J; Hou JG J Am Chem Soc; 2011 Feb; 133(6):2002-9. PubMed ID: 21247169 [TBL] [Abstract][Full Text] [Related]
11. Direct observation of atomic step edges on the rutile TiO Wen HF; Miyazaki M; Zhang Q; Adachi Y; Li YJ; Sugawara Y Phys Chem Chem Phys; 2018 Nov; 20(44):28331-28337. PubMed ID: 30398504 [TBL] [Abstract][Full Text] [Related]
12. Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. Gong XQ; Selloni A; Dulub O; Jacobson P; Diebold U J Am Chem Soc; 2008 Jan; 130(1):370-81. PubMed ID: 18069837 [TBL] [Abstract][Full Text] [Related]
13. Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. Rasmussen MD; Molina LM; Hammer B J Chem Phys; 2004 Jan; 120(2):988-97. PubMed ID: 15267936 [TBL] [Abstract][Full Text] [Related]
14. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110). Haubrich J; Kaxiras E; Friend CM Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119 [TBL] [Abstract][Full Text] [Related]
16. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Wendt S; Sprunger PT; Lira E; Madsen GK; Li Z; Hansen JØ; Matthiesen J; Blekinge-Rasmussen A; Laegsgaard E; Hammer B; Besenbacher F Science; 2008 Jun; 320(5884):1755-9. PubMed ID: 18535207 [TBL] [Abstract][Full Text] [Related]
17. The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. Lira E; Wendt S; Huo P; Hansen JØ; Streber R; Porsgaard S; Wei Y; Bechstein R; Lægsgaard E; Besenbacher F J Am Chem Soc; 2011 May; 133(17):6529-32. PubMed ID: 21480608 [TBL] [Abstract][Full Text] [Related]
18. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110)-1 × 1. Kim B; Li Z; Kay BD; Dohnálek Z; Kim YK Phys Chem Chem Phys; 2012 Nov; 14(43):15060-5. PubMed ID: 23034737 [TBL] [Abstract][Full Text] [Related]
19. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101). Cheng H; Selloni A J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581 [TBL] [Abstract][Full Text] [Related]
20. Adsorption and reactions of O2 on anatase TiO2. Li YF; Aschauer U; Chen J; Selloni A Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]